

Open SoC Debug Software Reference Implementation

This is the reference implementation of the Open SoC Debug host software, i.e. the part of Open SoC Debug typically executed on a “standard” PC.
The documentation is split in three parts.

The Overview Documents provide a general big-picture introduction to the ideas and concepts of OSD.
They are written for a wide technical and non-technical audience.

The Developer Documentation provides techncial information about the implementation of the OSD host software.
Read this documentation for information how to create software based on libosd, or how to extend the reference implementation itself.

Finally, the (End) User Documentation shows how to use the various tools provided by this reference implementation.
This documentation is intended for end users, i.e. people trying to debug a system using OSD.

Introduction

This is the reference implementation of the Open SoC Debug host software, i.e. the part of Open SoC Debug typically executed on a “standard” PC.

About the code

A couple of quick facts before we start:

	Most code is written in object-oriented C.

	The code targets POSIX platforms (e.g. Linux). Windows is not supported right now (patches are welcome!).

	ZeroMQ is used heavily for communication between the individual components.

	All code is licensed under the permissive MIT license.

On a high level, the implementation is split into two parts:

	libosd, a reusable software library which does all the heavy lifting and provides an API for debug tools on the host. This code can be found in src/libosd.

	A set of tools which use libosd to fulfill a well-defined task (e.g. interface to a device, or log trace messages). The associated code can be found in src/tools.

The software architecture

The Open SoC Debug host software is composed of a set of standalone tools which each fulfill a single task.
In many cases, a tool is identical to a debug module on the host.

The tools communicate via ZeroMQ sockets.
These sockets provide an abstraction over the actual transport type.
Typically, TCP is chosen (which allows for communication between modules on a single machine, but also on different machines).
Also available are in-process communication via shared memory (useful if two tools are implemented inside a single process), socket communication (a bit faster than TCP when running on a single machine), and others.

[image: An overview of all OSD host software components from a user's perspective]Fig. 1 An overview of all OSD host software components from a user’s perspective

Figure 1 presents an overview of the OSD host software architecture.

At the center of the architecture is the osd-host-controller.
The host subnet controller has two jobs:

	It provides a central connection point for all tools and acts as message router.

	It provides low-level communication tasks, i.e. it assigns DI addresses to host debug modules.

From a user’s perspective, all interesting functionality is implemented as host debug module.
In many cases, each host debug module is implemented as standalone tool.
For example, the tool osd-systrace-log is a host debug module which writes all STM messages it receives into a file.
Other examples include a gdb server debug module which enables GDB clients to connect to an OSD-enabled system, or a trace logger, which writes instruction traces into a file.

Finally, the osd-device-gateway tool connects the host to a target device, e.g. an FPGA.
It registers itself as gateway with the osd-host-controller, and transparently extends the debug interconnect to the subnet on the target device.
The communication interface between the target device and the osd-device-gateway depends on whatever physical interfaces are available on the target (typically UART or USB).
This device-host communication is encapsulated by GLIP, hence all GLIP-supported communication methods are also supported.

OSD Software Developer Documentation

	OSD Host Communication Protocol

	Tutorial: How to create a new debug tool

	Unit Tests

	Debugging

	API Documentation

OSD Host Communication Protocol

Message Types

All data on the host is transferred using ZeroMQ.
The protocol used inside the ZeroMQ messages is described in this section.

All ZeroMQ messages consist of three frames.

Table 1 ZeroMQ message frame structure

	Frame

	Name

	Description

	1

	src

	Message source (ZeroMQ identity frame)

	2

	type

	Type of the message. Either D for data messages (encapsulated DI packets), or M for management messages (host only).

	3

	payload

	Payload of the message. Its contents depend on the type.

Data Messages

Data messages must have the type frame set to D.
The payload field contains then a full OSD DI packet as an array of uint16_t words in system-native byte ordering (i.e. usually little endian).

Management Messages

Management messages must have the type frame set to M.
These messages are used as a protocol layer below the DI, e.g. to dynamically aquire and release an address in the debug interconnect (which later can be used when sending data messages).

DIADDR_REQUEST

	Source: any host debug module

	Target: host subnet controller

Request a new (previously unused) Debug Interconnect address from the host controller for this subnet.

The subnet controller responds with a management message containing the assigned address as unsigned integer as payload.
If the address assignment failed, a NACK message is sent instead.

DIADDR_RELEASE

	Source: any host debug module

	Target: host subnet controller

Release the DI address assigned to the source.

If successsful, the subnet controller responds with an ACK message.
If not successful, a NACK message is sent.

GW_REGISTER <subnet-addr>

	Source: any

	Target: host subnet controller

Register the source of this message as gateway for all traffic intended for subnet <subnet-addr>.
<subnet-addr> is given as decimal integer (base 10).

If successsful, the subnet controller responds with an ACK message.
If not successful, a NACK message is sent.

GW_UNREGISTER <subnet-addr>

	Source: any

	Target: host subnet controller

Remove the association of the gateway with subnet <subnet-addr>.
<subnet-addr> is given as decimal integer (base 10).

If successsful, the subnet controller responds with an ACK message.
If not successful, a NACK message is sent.

ACK

	Source: any

	Target: any

Generic acknowledgement “operation successful”.

NACK

	Source: any

	Target: any

Generic error message “operation failed”.

Protocol Flows

Host Debug Module: Connect

Host: Disconnect

Host: Register as Gateway Device

Tutorial: How to create a new debug tool

Todo

missing content

Unit Tests

The OSD software comes with an extensive set of unit tests, written using the Check framework [https://libcheck.github.io/check/].

You can run the unit tests by calling make check in the build directory.

make check

Check writes two types of log files: one log summary tests/unit/test-suite.log and an individual log file per test named after the test, e.g. tests/unit/check_hostmod.log.
printf() output from the individual tests is only written to the individual log files if the tests pass.
To get pass/fail remarks per test function set the CK_VERBOSITY environment variable to verbose when running a test.

Note

If you don’t find expected printf() output in the test log file try adding a fflush(stdout) statement after the printf().

view test summary
less tests/unit/test-suite.log

obtain and view verbose logs for check_hostmod
CK_VERBOSITY=verbose make check
less tests/unit/check_hostmod.log

Sometimes it’s helpful to debug the tests themselves using gdb.
The following command line runs a compiled test under gdb (replace check_hostmod with your test):

make check # build the tests (if not already done)
CK_FORK=no libtool --mode=execute gdb tests/unit/check_hostmod

To further control the execution of tests the check framework offers a number of environment variables.
These are listed in the documentation [https://libcheck.github.io/check/doc/check_html/check_7.html].

Analyzing Code Coverage

To gain insight into which parts of the software are tested you can generate a coverage report.
To build and execute all tests and to finally generate a coverage report as HTML page run

make check-code-coverage
firefox tests/unit/opensocdebug-*-coverage/index.html

Find memory leaks with Valgrind

To check the code for memory errors you can run the unit test suite under Valgrind with its memcheck [https://valgrind.org/docs/manual/mc-manual.html] tool.
Valgrind support must be enabled at configure time by passing the options --enable-valgrind --disable-asan to the configure script.

run all tests with Valgrind
make check-valgrind

Find memory errors with Address Sanitizer (ASan)

Address Sanitizer [https://github.com/google/sanitizers/wiki/AddressSanitizer] (ASan) is a tool to find common classes of memory errors, such as out of bounds accesses.
It complements Valgrind especially for data on the stack.

To enable ASan run configure with --disable-valgrind --enable-asan.
(It’s not possible to create a build with ASan and Valgrind enabled at the same time.)
ASan is then built-in and enabled in all produced binaries, including the unit tests.
In case of errors ASan will report them during the program run.

ASan is automatically enabled when running the test suite
make check

Debugging

Run the program with GDB

Before make install is called all compiled binaries in the source tree are wrapped by libtool.
To run GDB on them, use the following command line:

general
libtool --mode=execute gdb --args YOUR_TOOL

for example
libtool --mode=execute gdb --args ./src/tools/osd-target-run/osd-target-run -e ~/src/baremetal-apps/hello/hello.elf -vvv

GDB helpers

GDB can call functions in the program binary when the program is stopped (e.g. when a breakpoint hit).
This can be used to dump useful information from data structures in a readable form.

dump a DI packet
(gdb) p osd_packet_dump(pkg, stdout)
Packet of 5 data words:
DEST = 4096, SRC = 1, TYPE = 2 (OSD_PACKET_TYPE_EVENT), TYPE_SUB = 0
Packet data (including header):
 0x1000
 0x0001
 0x8000
 0x0000
 0x0000
$5 = void

Profiling

Generating an execution profile of the OSD tools can be helpful to reduce the CPU consumption, increase throughput, etc.
To generate a profile we recommend the Linux perf tool.
(gprof doesn’t play nice with ZeroMQ.)

Setup perf

Install perf using the package manager of your distribution.

install perf
for Ubuntu/Debian
sudo apt-get install perf
for SUSE
sudo zypper install perf

Running perf as non-root user requires a couple kernel settings to be changed.

Give access to kernel pointers
sudo sh -c " echo 0 > /proc/sys/kernel/kptr_restrict"

Give access to perf events
sudo sh -c " echo 0 > /proc/sys/kernel/perf_event_paranoid"

Make kernel permissions permanent after the next reboot (optional)
echo "kernel.kptr_restrict=0\nkernel.perf_event_paranoid=0" >> /etc/sysctl.conf"

Profile application

First, build the application as usual.
Then, from inside the source tree, run the tool with perf record to collect an execution profile.

example: profile osd-target-run (without call stacks)
libtool --mode=execute perf record ./src/tools/osd-target-run/osd-target-run -e ~/src/baremetal-apps/hello/hello.elf --systrace -vvv

the same with call stacks
libtool --mode=execute perf record -g ./src/tools/osd-target-run/osd-target-run -e ~/src/baremetal-apps/hello/hello.elf --systrace -vvv

Evaluate profile

perf record stores the recorded events in a file called perf.data in the directory it was called in.
To display this data nicely run perf report.

perf report

API Documentation

libosd consists of a number of classes, each handling one distict task.
Each class is contained in one C header file.

Contents

	osd_hostmod class

	osd_hostctrl class

	osd_gateway class

	osd_cl_mam class

	osd_cl_scm class

	osd_cl_stm class

	osd_cl_ctm class

	osd_cl_cdm class

	osd_log class

	osd_packet class

	Error Handling

	osd_memaccess class

	osd_systracelogger class

	osd_coretracelogger class

osd_hostmod class

This class represents a debug module on the host.

osd_hostmod implements functionality common to all host debug modules, and provides extension for individual host module implementations.
Most importantly, osd_hostmod encapsulates all communication with the host controller.

Usage

#include <osd/osd.h>
#include <osd/hostmod.h>

Example

#include <osd/osd.h>
#include <osd/hostmod.h>

const char* HOST_CONTROLLER_URL = "tcp://localhost:6666";

// initialize class
osd_hostmod_ctx *hostmod_ctx;
osd_hostmod_new(&hostmod_ctx);

// connect to host controller
osd_hostmod_connect(hostmod_ctx, HOST_CONTROLLER_URL);

// the subnet controller assigns this host module a unique address
uint16_t addr;
addr = osd_hostmod_get_diaddr(hostmod_ctx);
printf("This module got the address %d assigned.\n", addr);

// read register 0x0000 from module with address 0x0000
uint16_t result;
osd_hostmod_reg_read(hostmod_ctx, 0, 0, 16, &result, 0);
printf("Read returned value %u.\n", result);

// disconnect from host controller
osd_hostmod_disconnect(hostmod_ctx);

// cleanup
osd_hostmod_free(&hostmod_ctx);

Public Interface

Defines

	
OSD_HOSTMOD_BLOCKING

	Flag: fully blocking operation (i.e. wait forever)

Typedefs

	
typedef osd_result(* osd_hostmod_event_handler_fn)(void *, struct osd_packet *)

	Event handler function prototype

The ownership of packet is passed to the handler function.

Functions

	
osd_result osd_hostmod_new(struct osd_hostmod_ctx ** ctx, struct osd_log_ctx * log_ctx, const char * host_controller_address, osd_hostmod_event_handler_fn event_handler, void * event_handler_arg)

	Create new osd_hostmod instance

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_free()

	Parameters

	
	[out] ctx: the osd_hostmod_ctx context to be created

	[in] log_ctx: the log context to be used. Set to NULL to disable logging

	[in] host_controller_address: ZeroMQ endpoint of the host controller

	[in] event_handler: function called when a new event packet is received

	[in] event_handler_arg: argument passed to the event handler callback

	
void osd_hostmod_free(struct osd_hostmod_ctx ** ctx)

	Free and NULL a communication API context object

Call osd_hostmod_disconnect() before calling this function.

	Parameters

	
	ctx: the osd_com context object

	
osd_result osd_hostmod_connect(struct osd_hostmod_ctx * ctx)

	Connect to the host controller

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_disconnect()

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	
osd_result osd_hostmod_disconnect(struct osd_hostmod_ctx * ctx)

	Shut down all communication with the device

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_run()

	Parameters

	
	ctx: the osd_hostmod context object

	
bool osd_hostmod_is_connected(struct osd_hostmod_ctx * ctx)

	Is the connection to the device active?

	Return

	1 if connected, 0 if not connected

	See

	osd_hostmod_connect()

	See

	osd_hostmod_disconnect()

	Parameters

	
	ctx: the osd_hostmod context object

	
osd_result osd_hostmod_reg_read(struct osd_hostmod_ctx * ctx, void * reg_val, uint16_t diaddr, uint16_t reg_addr, int reg_size_bit, int flags)

	Read a register of a module in the debug system

Unless the flag OSD_HOSTMOD_BLOCKING has been set this function times out if the module does not reply within a ZMQ_RCV_TIMEOUT milliseconds.

	Return

	OSD_OK on success, any other value indicates an error

	Return

	OSD_ERROR_TIMEDOUT if the register read timed out (only if OSD_HOSTMOD_BLOCKING is not set)

	See

	osd_hostmod_write()

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	[out] reg_val: the result of the register read. Preallocate a variable large enough to hold reg_size_bit bits.

	diaddr: the DI address of the module to read the register from

	reg_addr: the address of the register to read

	reg_size_bit: size of the register in bit. Supported values: 16, 32, 64 and 128.

	flags: flags. Set OSD_HOSTMOD_BLOCKING to block indefinitely until the access succeeds.

	
osd_result osd_hostmod_reg_write(struct osd_hostmod_ctx * ctx, const void * reg_val, uint16_t diaddr, uint16_t reg_addr, int reg_size_bit, int flags)

	Write a register of a module in the debug system

	Return

	OSD_OK on success, any other value indicates an error

	Return

	OSD_ERROR_TIMEDOUT if the register read timed out (only if OSD_HOSTMOD_BLOCKING is not set)

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	reg_val: the data to be written. Provide enough data according to reg_size_bit

	diaddr: the DI address of the accessed module

	reg_addr: the address of the register to read

	reg_size_bit: size of the register in bit. Supported values: 16, 32, 64 and 128.

	flags: flags. Set OSD_HOSTMOD_BLOCKING to block indefinitely until the access succeeds.

	
osd_result osd_hostmod_reg_setbit(struct osd_hostmod_ctx * hostmod_ctx, unsigned int bitnum, bool bitval, uint16_t diaddr, uint16_t reg_addr, int reg_size_bit, int flags)

	Set (or unset) a bit in a debug module configuration register

The setting of a single bit requires a read-modify-write cycle of the register, which is not atomic and not locked.

	Return

	OSD_OK on success, any other value indicates an error

	Return

	OSD_ERROR_TIMEDOUT if the register read timed out (only if OSD_HOSTMOD_BLOCKING is not set)

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	bitnum: bit to modify (bit 0 = LSB)

	bitval: value to set the bit to

	diaddr: the DI address of the accessed module

	reg_addr: the address of the register to read

	reg_size_bit: size of the register in bit. Supported values: 16, 32, 64 and 128.

	flags: flags. Set OSD_HOSTMOD_BLOCKING to block indefinitely until the access succeeds.

	
uint16_t osd_hostmod_get_diaddr(struct osd_hostmod_ctx * ctx)

	Get the DI address assigned to this host debug module

The address is assigned during the connection, i.e. you need to call osd_hostmod_connect() before calling this function.

	Return

	the address assigned to this debug module

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	
unsigned int osd_hostmod_get_max_event_words(struct osd_hostmod_ctx * ctx, unsigned int di_addr_target)

	Get the maximum number paylaod of words in an event packet

	Return

	the number of payload words in an event packet sent to di_addr_target

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	
osd_result osd_hostmod_event_send(struct osd_hostmod_ctx * ctx, const struct osd_packet * event_pkg)

	Send an event packet to its destination

	Return

	OSD_OK on success, any other value indicates an error

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	event_pkg: the event packet to be sent

	
osd_result osd_hostmod_event_receive(struct osd_hostmod_ctx * ctx, struct osd_packet ** event_pkg, int flags)

	Receive an event packet

By default, this function times out with OSD_ERROR_TIMEOUT if no packet was received. Pass OSD_HOSTMOD_BLOCKING to flags to make the function block until a packet is received.

	Return

	OSD_OK on success, any other value indicates an error

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	[out] event_pkg: the received event packet. Allocated by this function, must be free’d by caller after use.

	flags: a ORed list of flags (see description)

	
osd_result osd_hostmod_get_modules(struct osd_hostmod_ctx * ctx, unsigned int subnet_addr, struct osd_module_desc ** modules, size_t * modules_len)

	Get a list of all debug modules in a given subnet

	Return

	OSD_OK on success OSD_ERROR_RESULT_PARTIAL if at least one module failed to enumerate any other value indicates an error

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	subnet_addr: the address of the subnet to query for modules

	[out] modules: the modules found in the given subnet. The array is allocated by this function and ownership passed to the caller, who must free it after use.

	[out] module_len: the number of entries in modules

	
osd_result osd_hostmod_mod_describe(struct osd_hostmod_ctx * ctx, uint16_t di_addr, struct osd_module_desc * desc)

	Get the description fields of a debug module (type, vendor, version)

	Return

	OSD_OK on success, any other value indicates an error

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	di_addr: the DI address of the module to describe

	[out] desc: a struct describing the module

	
osd_result osd_hostmod_mod_set_event_dest(struct osd_hostmod_ctx * ctx, uint16_t di_addr, int flags)

	Set this host module as event destination for the module at di_addr

By default, this function times out with OSD_ERROR_TIMEOUT if no packet was received. Pass OSD_HOSTMOD_BLOCKING to flags to make the function block until a packet is received.

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_mod_set_event_active()

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	di_addr: the address of the DI module

	flags: a ORed list of flags (see description)

	
osd_result osd_hostmod_mod_set_event_active(struct osd_hostmod_ctx * ctx, uint16_t di_addr, bool enabled, int flags)

	Enable/disable sending of events by the module at DI address di_addr

Events are sent to the DI address configured in the module. Use osd_hostmod_mod_set_evdest() to make this host module receive the events.

By default, this function times out with OSD_ERROR_TIMEOUT if no packet was received. Pass OSD_HOSTMOD_BLOCKING to flags to make the function block until a packet is received.

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_mod_set_evdest()

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	di_addr: the address of the DI module to enable/disable

	enabled: 1 to enable event sending, 0 to disable it

	flags: a ORed list of flags (see description)

	
struct osd_log_ctx* osd_hostmod_log_ctx(struct osd_hostmod_ctx * ctx)

	Get the logging context for this host module (internal use only)

Internal Architecture

Note

This section is targeting developers working on the osd_hostmod module.

Note

TBD

osd_hostctrl class

This class contains the host controller.
The host controller is the central instance in a host subnet and has the following tasks:

	It serves as central connection point for all host modules (i.e. forming a star topology).
As such, it handles the setup and teardown of connections, as well as assigning of DI addreses.

	It routes messages between host modules.

	Gateways can connect to the host controller to extend the debug network beyond the host.

Usage

#include <osd/osd.h>
#include <osd/hostctrl.h>

Public Interface

Functions

	
osd_result osd_hostctrl_new(struct osd_hostctrl_ctx ** ctx, struct osd_log_ctx * log_ctx, const char * router_address)

	Create new host controller

The host controller will listen to requests at router_addres

	Return

	OSD_OK if initialization was successful, any other return code indicates an error

	Parameters

	
	ctx: context object

	log_ctx: logging context

	router_address: ZeroMQ endpoint/URL the host controller will listen on

	
osd_result osd_hostctrl_start(struct osd_hostctrl_ctx * ctx)

	Start host controller

	
osd_result osd_hostctrl_stop(struct osd_hostctrl_ctx * ctx)

	Stop host controller

	
void osd_hostctrl_free(struct osd_hostctrl_ctx ** ctx_p)

	Free the host controller context object (destructor)

By calling this function all resources associated with the context object are freed and the ctx_p itself is NULLed.

	Parameters

	
	ctx_p: the host controller context object

	
bool osd_hostctrl_is_running(struct osd_hostctrl_ctx * ctx)

	Is the host controller running?

	Return

	true if the host controller is running, false otherwise

	Parameters

	
	ctx: the context object

osd_gateway class

This class implements a gateway between two debug subnets, typically between the subnet on the host and the one on a “target device”, an OSD enabled chip (as an ASIC, on an FPGA or running in simulation).
On the host side, the gateway registers with the host controller for a given subnet.
It then receives all traffic going to this subnet.
On the device side, the OSD packets are transformed into Data Transport Datagrams (length-value encoded OSD packets).
Standard read()/write() callback function can then be implemented to perform the actual data transfer to the device, possibly using another suitable library (such as GLIP).

Behavior on connection loss

The connected device can drop the connection at any time.
That is signaled by the device by returning OSD_ERROR_NOT_CONNECTED from its packet_read() and packet_write() callback functions.
When osd_gateway detects this kind of loss in connectivity, it disconnects the gateway from the host controller.

Usage

#include <osd/osd.h>
#include <osd/gateway.h>

Public Interface

Typedefs

	
typedef osd_result(* packet_read_fn)(struct osd_packet **pkg, void *cb_arg)

	Read a osd_packet from the device

	Return

	OSD_ERROR_NOT_CONNECTED if the not connected to the device

	Return

	OSD_OK if successful

	Parameters

	
	pkg: the packet to read to (allocated by the called function)

	cb_arg: an user-defined callback argument

	
typedef osd_result(* packet_write_fn)(const struct osd_packet *pkg, void *cb_arg)

	Write a osd_packet to the device

	Return

	OSD_ERROR_NOT_CONNECTED if the not connected to the device

	Return

	OSD_OK if successful

	Parameters

	
	pkg: the packet to write

	cb_arg: an user-defined callback argument

Functions

	
osd_result osd_gateway_new(struct osd_gateway_ctx ** ctx, struct osd_log_ctx * log_ctx, const char * host_controller_address, uint16_t device_subnet_addr, packet_read_fn packet_read, packet_write_fn packet_write, void * cb_arg)

	Create new osd_gateway instance

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_gateway_free()

	Parameters

	
	[out] ctx: the osd_gateway_ctx context to be created

	[in] log_ctx: the log context to be used. Set to NULL to disable logging

	[in] host_controller_address: ZeroMQ endpoint of the host controller

	[in] device_subnet_addr: Subnet address of the device

	[in] packet_read: callback function to perform a read from the device

	[in] packet_write: callback function to perform a write to the device

	[in] cb_arg: an user-defined pointer passed to all callback functions, such as packet_read and packet_write. Can be used to pass context objects to the callbacks. Set to NULL if unused. Note: the callbacks are called from different threads, make sure all uses of cb_arg inside the callbacks are thread safe.

	
void osd_gateway_free(struct osd_gateway_ctx ** ctx)

	Free and NULL a communication API context object

Call osd_gateway_disconnect() before calling this function.

	Parameters

	
	ctx: the osd_com context object

	
osd_result osd_gateway_connect(struct osd_gateway_ctx * ctx)

	Connect to the device and to the host controller

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_gateway_disconnect()

	Parameters

	
	ctx: the osd_gateway_ctx context object

	
osd_result osd_gateway_disconnect(struct osd_gateway_ctx * ctx)

	Shut down all communication with the device and the host controller

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_gateway_run()

	Parameters

	
	ctx: the osd_hostmod context object

	
bool osd_gateway_is_connected(struct osd_gateway_ctx * ctx)

	Is the connection to the device and to the host controller active?

	Return

	1 if connected, 0 if not connected

	See

	osd_gateway_connect()

	See

	osd_gateway_disconnect()

	Parameters

	
	ctx: the context object

	
struct osd_gateway_transfer_stats* osd_gateway_get_transfer_stats(struct osd_gateway_ctx * ctx)

	Get statistics about the data transferred through the gateway

	
struct osd_gateway_transfer_stats

	#include <gateway.h>Data transfer statistics

	See

	osd_gateway_get_transfer_stats()

Public Members

	
struct timespec connect_time

	

	
uint64_t bytes_from_device

	

	
uint64_t bytes_to_device

	

osd_cl_mam class

A client for the Memory Access Module (MAM).

cl_mam is the counterpart to the Memory Access Module (MAM): it implements the MAM protocol to read and write data from and to memories.

Usage

#include <osd/osd.h>
#include <osd/cl_mam.h>

Public Interface

Functions

	
osd_result osd_cl_mam_get_mem_desc(struct osd_hostmod_ctx * hostmod_ctx, unsigned int mam_di_addr, struct osd_mem_desc * mem_desc)

	Obtain information about the memory connected to a MAM module

	Return

	OSD_OK on success, any other value indicates an error

	Parameters

	
	hostmod_ctx: the host module handling the communication

	mam_di_addr: DI address of the MAM module to get describe

	[out] mem_desc: pre-allocated memory descriptor for the result

	
osd_result osd_cl_mam_write(const struct osd_mem_desc * mem_desc, struct osd_hostmod_ctx * hostmod_ctx, const void * data, size_t nbyte, uint64_t start_addr)

	Write data to the memory attached to a Memory Access Module (MAM)

The data does not need to be word-aligned. Writes across memory region boundaries are not allowed. This function blocks until the write is acknowledged by the memory.

	Return

	OSD_OK if the write was successful any other value indicates an error

	See

	osd_cl_mam_read()

	Parameters

	
	mem_desc: descriptor of the target memory

	hostmod_ctx: the host module handling the communication

	data: the data to be written

	nbyte: the number of bytes to write

	start_addr: first byte address to write data to. All subsequent words are written to consecutive addresses.

	
osd_result osd_cl_mam_read(const struct osd_mem_desc * mem_desc, struct osd_hostmod_ctx * hostmod_ctx, void * data, size_t nbyte, uint64_t start_addr)

	Read data from a memory attached to a Memory Access Module (MAM)

The data does not need to be word-aligned. Reads across memory region boundaries are not allowed. This function blocks until the write is acknowledged by the memory.

	Return

	OSD_OK if the read was successful any other value indicates an error

	See

	osd_cl_mam_write()

	Parameters

	
	mem_desc: descriptor of the target memory

	hostmod_ctx: the host module handling the communication

	data: the returned read data. Must be preallocated and large enough for nbyte bytes of data.

	nbyte: the number of bytes to read

	start_addr: first byte address to read from

	
struct osd_mem_desc_region

	#include <cl_mam.h>Information about a memory region

Public Members

	
uint64_t baseaddr

	

	
uint64_t memsize

	

	
struct osd_mem_desc

	#include <cl_mam.h>Information about a memory attached to a MAM module

Public Members

	
unsigned int di_addr

	DI address of the memory.

	
uint16_t data_width_bit

	Data width in bit.

	
uint16_t addr_width_bit

	Address width in bit.

	
uint8_t num_regions

	Number of accessible memory regions.

	
struct osd_mem_desc_region osd_mem_desc::regions[8]

	Memory region information.

osd_cl_scm class

API to access the functionality of the Subnet Control Module (SCM).

Usage

#include <osd/osd.h>
#include <osd/cl_scm.h>

Public Interface

Functions

	
osd_result osd_cl_scm_cpus_start(struct osd_hostmod_ctx * hostmod_ctx, unsigned int subnet_addr)

	Start (un-halt) all CPUs in the SCM subnet

	See

	osd_cl_scm_cpus_stop()

	
osd_result osd_cl_scm_cpus_stop(struct osd_hostmod_ctx * hostmod_ctx, unsigned int subnet_addr)

	Stop (halt) all CPUs in the SCM subnet

	
osd_result osd_cl_scm_get_subnetinfo(struct osd_hostmod_ctx * hostmod_ctx, unsigned int subnet_addr, struct osd_subnet_desc * subnet_desc)

	Get a description of a given subnet from the SCM

Read the system information from the device, as stored in the SCM

	
struct osd_subnet_desc

	
Public Members

	
uint16_t vendor_id

	

	
uint16_t device_id

	

	
uint16_t max_pkt_len

	

osd_cl_stm class

API to access the functionality of the System Trace Module (STM).

Usage

#include <osd/osd.h>
#include <osd/cl_stm.h>

Public Interface

Typedefs

	
typedef void(* osd_cl_stm_handler_fn)(void *, const struct osd_stm_desc *, const struct osd_stm_event *)

	

Functions

	
osd_result osd_cl_stm_get_desc(struct osd_hostmod_ctx * hostmod_ctx, unsigned int stm_di_addr, struct osd_stm_desc * stm_desc)

	Populate the STM descriptor with data from the debug module

	Return

	OSD_OK on success OSD_ERROR_WRONG_MODULE if the module at stm_di_addr is not a STM any other value indicates an error

	Parameters

	
	hostmod_ctx: the host module handling the communication

	stm_di_addr: DI address of the STM module to get describe

	[out] stm_desc: pre-allocated memory descriptor for the result

	
osd_result osd_cl_stm_handle_event(void * arg, struct osd_packet * pkg)

	Event handler to process STM event, to be passed to a hostmod instance

	
bool osd_cl_stm_is_print_event(const struct osd_stm_event * ev)

	Is the given STM event a sysprint event?

	
osd_result osd_cl_stm_print_buf_new(struct osd_cl_stm_print_buf ** print_buf_p)

	Allocate memory for a new osd_cl_stm_print_buf struct

	
void osd_cl_stm_print_buf_free(struct osd_cl_stm_print_buf ** print_buf_p)

	Free a osd_cl_stm_print_buf struct

	
osd_result osd_cl_stm_add_to_print_buf(const struct osd_stm_event * ev, struct osd_cl_stm_print_buf * buf, bool * should_flush)

	Add a STM event to the print buffer

	
struct osd_stm_desc

	#include <cl_stm.h>Information a System Trace Module

Public Members

	
unsigned int di_addr

	DI address of the memory.

	
uint16_t value_width_bit

	Size of the value in a trace event in bit.

	
struct osd_stm_event

	#include <cl_stm.h>A single event emitted by the STM module

In case of an overflow in the system an overflow even is generated, containing the number of missed events. If the overflow value is set to a non-zero value, id and value are invalid.

Public Members

	
uint32_t timestamp

	timestamp

	
uint16_t id

	event identifier

	
uint64_t value

	traced value

	
uint16_t overflow

	Number of lost packets due to overflow.

	
struct osd_stm_event_handler

	
Public Members

	
const struct osd_stm_desc* stm_desc

	

	
osd_cl_stm_handler_fn cb_fn

	

	
void* cb_arg

	

	
struct osd_cl_stm_print_buf

	
Public Members

	
char* buf

	data buffer

	
size_t len_buf

	allocated size of |buf|

	
size_t len_str

	length of the string inside |buf|, excluding the zero termination

osd_cl_ctm class

API to access the functionality of the Core Trace Module (CTM).

Usage

#include <osd/osd.h>
#include <osd/cl_ctm.h>

Public Interface

Typedefs

	
typedef void(* osd_cl_ctm_handler_fn)(void *, const struct osd_ctm_desc *, const struct osd_ctm_event *)

	

Functions

	
osd_result osd_cl_ctm_get_desc(struct osd_hostmod_ctx * hostmod_ctx, unsigned int ctm_di_addr, struct osd_ctm_desc * ctm_desc)

	Populate the CTM descriptor with data from the debug module

	Return

	OSD_OK on success OSD_ERROR_WRONG_MODULE if the module at ctm_di_addr is not a CTM any other value indicates an error

	Parameters

	
	hostmod_ctx: the host module handling the communication

	ctm_di_addr: DI address of the CTM module to get describe

	[out] ctm_desc: pre-allocated memory descriptor for the result

	
osd_result osd_cl_ctm_handle_event(void * arg, struct osd_packet * pkg)

	Event handler to process CTM event, to be passed to a hostmod instance

	
struct osd_ctm_desc

	#include <cl_ctm.h>Information a Core Trace Module

Public Members

	
unsigned int di_addr

	DI address of the memory.

	
uint16_t addr_width_bit

	Width of an address in bit.

	
uint16_t data_width_bit

	Width of a data word in bit.

	
struct osd_ctm_event

	#include <cl_ctm.h>A single event emitted by the CTM module

In case of an overflow in the system an overflow even is generated, containing the number of missed events. If the overflow value is set to a non-zero value, all other fields except for the timestamp are invalid.

Public Members

	
uint16_t overflow

	number of overflowed packets

	
uint32_t timestamp

	timestamp

	
uint64_t npc

	npc

	
uint64_t pc

	pc

	
uint8_t mode

	privilege mode

	
bool is_ret

	executed instruction is a function return

	
bool is_call

	executed instruction is a function call

	
bool is_modechange

	executed instruction changed the privilege mode

	
struct osd_ctm_event_handler

	
Public Members

	
const struct osd_ctm_desc* ctm_desc

	

	
osd_cl_ctm_handler_fn cb_fn

	

	
void* cb_arg

	

osd_cl_cdm class

API to access the functionality of the Core Debug Module (CDM).

Usage

#include <osd/osd.h>
#include <osd/cl_cdm.h>

Public Interface

Typedefs

	
typedef void(* osd_cl_cdm_handler_fn)(void *, const struct osd_cdm_desc *, const struct osd_cdm_event *)

	

Functions

	
osd_result osd_cl_cdm_get_desc(struct osd_hostmod_ctx * hostmod_ctx, unsigned int cdm_di_addr, struct osd_cdm_desc * cdm_desc)

	Populate the CDM descriptor with data from the debug module

	Return

	OSD_OK on success OSD_ERROR_WRONG_MODULE if the module at cdm_di_addr is not a CDM any other value indicates an error

	Parameters

	
	hostmod_ctx: the host module handling the communication

	cdm_di_addr: DI address of the CDM module to get describe

	[out] cdm_desc: pre-allocated memory descriptor for the result

	
osd_result osd_cl_cdm_handle_event(void * arg, struct osd_packet * pkg)

	Event handler to process CDM event, to be passed to a hostmod instance

	
osd_result cl_cdm_cpureg_read(struct osd_hostmod_ctx * hostmod_ctx, struct osd_cdm_desc * cdm_desc, void * reg_val, uint16_t reg_addr, int flags)

	Read data from an SPR of the CPU attached to a Core Debug Module (CDM)

	Return

	OSD_OK if the read was successful any other value indicates an error

	See

	osd_cl_cdm_cpureg_write()

	Parameters

	
	hostmod_ctx: the host module handling the communication

	[out] cdm_desc: pre-allocated memory descriptor for the result

	reg_val: the returned read data

	reg_addr: address to read from

	flags: flags. Set OSD_HOSTMOD_BLOCKING to block indefinitely until the access succeeds.

	
osd_result cl_cdm_cpureg_write(struct osd_hostmod_ctx * hostmod_ctx, struct osd_cdm_desc * cdm_desc, const void * reg_val, uint16_t reg_addr, int flags)

	Write data to an SPR of the CPU attached to a Core Debug Module (CDM)

	Return

	OSD_OK if the write was successful any other value indicates an error

	See

	osd_cl_cdm_cpureg_read()

	Parameters

	
	hostmod_ctx: the host module handling the communication

	[out] cdm_desc: pre-allocated memory descriptor for the result

	reg_val: the data to be written

	reg_addr: address to write data to

	flags: flags. Set OSD_HOSTMOD_BLOCKING to block indefinitely until the access succeeds.

	
struct osd_cdm_desc

	#include <cl_cdm.h>Information about a Core Debug Module

Public Members

	
unsigned int di_addr

	DI address of CDM module.

	
uint16_t core_ctrl

	Control signal for CPU core.

	
uint16_t core_reg_upper

	Most significant bits of the SPR address.

	
uint16_t core_data_width

	CPU data width in bits.

	
struct osd_cdm_event

	#include <cl_cdm.h>A single event generated by the CDM module

Public Members

	
bool stall

	indicates the debugger that the CPU core is stalled.

	
struct osd_cdm_event_handler

	
Public Members

	
const struct osd_cdm_desc* cdm_desc

	

	
osd_cl_cdm_handler_fn cb_fn

	

	
void* cb_arg

	

osd_log class

Common logging functionality.

Usage

#include <osd/osd.h>

Public Interface

	
typedef void(* osd_log_fn)(struct osd_log_ctx *ctx, int priority, const char *file, int line, const char *fn, const char *format, va_list args)

	Logging function template

Implement a function with this signature and pass it to set_log_fn() if you want to implement custom logging.

	
osd_result osd_log_new(struct osd_log_ctx ** ctx, int log_priority, osd_log_fn log_fn)

	Create a new instance of osd_log_ctx

You may use the resulting log context on multiple threads.

	See

	osd_log_set_priority()

	See

	osd_log_set_fn()

	Parameters

	
	ctx: the logging context

	log_priority: filter: only log messages greater or equal the given priority. Use on the LOG_* constants in stdlog.h Set to 0 to use the default logging priority.

	log_fn: logging callback. Set to NULL to disable logging output.

	
void osd_log_free(struct osd_log_ctx ** ctx_p)

	Free and NULL an osd_log_ctx object

	Parameters

	
	ctx_p: the log context

	
void osd_log_set_fn(struct osd_log_ctx * ctx, osd_log_fn log_fn)

	Set logging function

The built-in logging writes to STDERR. It can be overridden by a custom function to log messages into the user’s logging functionality.

In many cases you want the log message to be associated with a context or object of your application, i.e. the object that uses OSD. In this case, set the context or this pointer with osd_log_set_caller_ctx() and retrieve it inside your log_fn.

An example in C++ could look like this:

static void MyClass::osdLogCallback(struct osd_log_ctx *gctx,
 int priority, const char *file,
 int line, const char *fn,
 const char *format, va_list args)
{
 MyClass *myclassptr = static_cast<MyClass*>(osd_get_caller_ctx(gctx));
 myclassptr->doLogging(format, args);
}

MyClass::MyClass()
{
 // ...
 osd_log_set_caller_ctx(gctx, this);
 osd_log_set_fn(&MyClass::osdLogCallback);
 // ...
}

MyClass::doLogging(const char* format, va_list args)
{
 printf("this = %p", this);
 vprintf(format, args);
}

	Parameters

	
	ctx: the log context

	log_fn: the used logging function

	
int osd_log_get_priority(struct osd_log_ctx * ctx)

	Get the logging priority

The logging priority is the lowest message type that is reported.

	Return

	the log priority

	See

	osd_log_set_priority()

	Parameters

	
	ctx: the log context

	
void osd_log_set_priority(struct osd_log_ctx * ctx, int priority)

	Set the logging priority

The logging priority is the lowest message type that is reported.

Allowed values for priority are LOG_DEBUG, LOG_INFO and LOG_ERR as defined in syslog.h.

For example setting priority will to LOG_INFO will result in all error and info messages to be shown, and all debug messages to be discarded.

	See

	osd_log_get_priority()

	Parameters

	
	ctx: the log context

	priority: new priority value

	
void osd_log_set_caller_ctx(struct osd_log_ctx * ctx, void * caller_ctx)

	Set a caller context pointer

This library does not use this pointer in any way, you’re free to set it to whatever your application needs.

	See

	osd_log_get_caller_ctx()

	See

	osd_log_set_fn() for a code example using this functionality

	Parameters

	
	ctx: the log context

	caller_ctx: the caller context pointer

	
void* osd_log_get_caller_ctx(struct osd_log_ctx * ctx)

	Get the caller context pointer

	Return

	the caller context pointer

	See

	osd_log_set_caller_ctx()

	Parameters

	
	ctx: the log context

osd_packet class

Representation of a single packet in the debug interconnect.

Accessor functions encapsulate reading and writing fields inside the packet.

Usage

#include <osd/osd.h>
#include <osd/packet.h>

Public Interface

	
libosd-packet::osd_packet_type

	Packet types

Values:

	
0

	

	
1

	

	
2

	

	
3

	

	
libosd-packet::osd_packet_type_reg_subtype

	Values of the TYPE_SUB field in if TYPE == OSD_PACKET_TYPE_REG

Values:

	
0b0000

	

	
0b0001

	

	
0b0010

	

	
0b0011

	

	
0b1000

	

	
0b1001

	

	
0b1010

	

	
0b1011

	

	
0b1100

	

	
0b0100

	

	
0b0101

	

	
0b0110

	

	
0b0111

	

	
0b1110

	

	
0b1111

	

	
libosd-packet::osd_packet_type_event_subtype

	Values of the TYPE_SUB field in if TYPE == OSD_PACKET_TYPE_EVENT

Values:

	
0

	

	
1

	

	
5

	

	
osd_result osd_packet_new(struct osd_packet ** packet, size_t size_data_words)

	Allocate memory for a packet with given data size and zero all data fields

The osd_packet.size field is set to the allocated size.

	Return

	OSD_OK if successful, any other value indicates an error

	See

	osd_packet_new_from_zframe()

	See

	osd_packet_realloc()

	See

	osd_packet_free()

	Parameters

	
	[out] packet: the packet to be allocated

	[in] size_data_words: number of uint16_t words in the packet, including the header words.

	
osd_result osd_packet_realloc(struct osd_packet ** packet_p, size_t data_size_words_new)

	Reallocate memory for a packet to increase or decrease its size

	Return

	OSD_OK if successful, any other value indicates an error

	See

	osd_packet_new()

	See

	osd_packet_free()

	Parameters

	
	packet_p: A pointer to an existing packet, which will be reallocated. The resulting pointer will potentially differ from the the passed pointer!

	[in] size_data_words: number of uint16_t words in the packet, including the header words. May be larger or smaller than the size of the existing packet.

	
osd_result osd_packet_new_from_zframe(struct osd_packet ** packet, const zframe_t * frame)

	Create a new packet from a zframe

	See

	osd_packet_new()

	
void osd_packet_free(struct osd_packet ** packet)

	Free the memory associated with the packet and NULL the object

	
osd_result osd_packet_combine(struct osd_packet ** first_p, const struct osd_packet * second)

	Append the payload of the second packet into the first packet

The header data of the second packet is ignored.

	Return

	OSD_OK if successful, any other value indicates an error

	Parameters

	
	first_p: a pointer to an existing packet, which will be reallocated the resulting pointer will be different than the the passed pointer!

	second: the packet of which the payload is appended to first

	
unsigned int osd_packet_get_dest(const struct osd_packet * packet)

	Extract the DEST field out of a packet

	
unsigned int osd_packet_get_src(const struct osd_packet * packet)

	Extract the SRC field out of a packet

	
unsigned int osd_packet_get_type(const struct osd_packet * packet)

	Extract the TYPE field out of a packet

	
unsigned int osd_packet_get_type_sub(const struct osd_packet * packet)

	Extract the TYPE_SUB field out of a packet

	
osd_result osd_packet_set_type_sub(struct osd_packet * packet, const unsigned int type_sub)

	Set the TYPE_SUB field in a packet

	
osd_result osd_packet_set_header(struct osd_packet * packet, const unsigned int dest, const unsigned int src, const enum osd_packet_type type, const unsigned int type_sub)

	Populate the header of a osd_packet

	Return

	OSD_OK on success, any other value indicates an error

	Parameters

	
	packet:

	dest: packet destination

	src: packet source

	type: packet type

	type_sub: packet subtype

	
size_t osd_packet_sizeof(const struct osd_packet * packet)

	Size in bytes of a packet

	
unsigned int osd_packet_sizeconv_payload2data(unsigned int payload_words)

	Get the number of data words required for the given payload words

Data words are the number of 16 bit words in a DI packet, including the DI header. Payload words are the number of 16 bit words in a DI packet excluding the header.

	
unsigned int osd_packet_sizeconv_data2payload(unsigned int data_words)

	Get the number of paylaod words required for the given data words

Data words are the number of 16 bit words in a DI packet, including the DI header. Payload words are the number of 16 bit words in a DI packet excluding the header.

	
void osd_packet_log(const struct osd_packet * packet, struct osd_log_ctx * log_ctx, const char * msg)

	Log a debug message with the packet in human-readable form

Use the msg parameter to prefix the dumped packet in the log entry with, for example, the type of packet being logged. This is preferrable over writing two log entries to keep the information together.

	Parameters

	
	packet: packet to log

	log_ctx: the log context to write to

	msg: message to be prepended to the dumped packet

	
void osd_packet_dump(const struct osd_packet * packet, FILE * fd)

	Dump a packet in human-readable (debugging) form to a file stream

	See

	osd_packet_to_string()

	Parameters

	
	packet: packet to dump

	fd: stream to dump packet to. You can use stdout and stderr here.

	
void osd_packet_to_string(const struct osd_packet * packet, char ** str)

	Dump the packet to a string (for human consumption)

The string representation of a packet is for debugging purposes only and may change at any time, do not rely on it for automated parsing.

	See

	osd_packet_dump()

	
bool osd_packet_fwrite(const struct osd_packet * packet, FILE * fd)

	Write a packet from a file descriptor

In its current implementation this function memory-dumps osd_packet structs to a file, without any encoding. This has some consequences:

	The resulting file is in native endianness, i.e. not portable between little and big endian machines.

	No file header is present, or any for of file magic number to identify the file type.

	No file integrity checks, such as checksums.

	Return

	bool operation successful?

	See

	osd_packet_fread()

	Parameters

	
	packet: the packet to write

	fd: the open file descriptor to write to

	
struct osd_packet* osd_packet_fread(FILE * fd)

	Read a packet from an open file descriptor

See the discussion in osd_packet_fwrite() for known limitations.

	Return

	the read packet, or NULL if reading failed

	See

	osd_packet_fwrite()

	Parameters

	
	fd: an open file descriptor to read from

	
bool osd_packet_equal(const struct osd_packet * p1, const struct osd_packet * p2)

	Check if two packets are equal

	
DP_HEADER_TYPE_SHIFT

	

	
DP_HEADER_TYPE_MASK

	

	
DP_HEADER_TYPE_SUB_SHIFT

	

	
DP_HEADER_TYPE_SUB_MASK

	

	
DP_HEADER_SRC_SHIFT

	

	
DP_HEADER_SRC_MASK

	

	
DP_HEADER_DEST_SHIFT

	

	
DP_HEADER_DEST_MASK

	

	
struct osd_packet

	#include <packet.h>A packet in the Open SoC Debug system

Error Handling

All functions in this project use a common scheme for return codes and error handling.

All functions, except for getters and setters, return the type osd_result.
A return code of OSD_OK indicates a successful function call, any other return value indicates an error.
The error types are given as one of the OSD_ERROR_*.

Use OSD_SUCCEEDED to check if a function call was successful, and OSD_FAILED to check if it failed.

Use of assertions

Using assertions within libosd causes the application using libosd to crash.
A crash can be a good way to fail early, however, it may be used only for non-recoverable errors or programming errors.
In consequence, libosd makes use of assertions to check for internal errors (i.e. bugs in libosd), or to check for violated API calling conventions.
However, assertions are not used to check for invalid or missing input data from known-to-be-unreliable sources (e.g. from the network, from a user or from the file system).

Assertions are used in the following cases:

	API calling conventions are not followed.

	Violoated pre- or postconditions: the internal state when entering or exiting a function isn’t what was expected.

Assertions are not used in in the following scenarios:

	User input to a function is not valid.

	Unexpected data was received from the network, from the file system, or similar sources.

	The communication broke down.

Handling memory allocation errors

In general, out of memory errors returned from malloc() and similar functions are fatal, i.e. cause the program using libosd to crash.
This is motivated by the fact that these errors occur very rarely and the associated error handling path is rarely executed and tested.

In some cases where larger memory allocations are required, especially contiguous chunks of memory, error handling is implemented and fallback paths are used.

Example

#include <osd/osd.h>
#include <assert.h>

osd_result rv;

// common case: pass error on to calling function
rv = osd_some_call();
if (OSD_FAILED(rv)) {
 return rv;
}

// check for a successful call
rv = osd_another_call();
if (OSD_SUCCEEDED(rv)) {
 printf("Call successful!\n");
}

// A failing call may not happen and hence is a bug in OSD: use assert()
rv = osd_must_succeed_call();
assert(OSD_SUCCEEDED(rv));

// fatal malloc: assert if the memory allocation failed
char* some_data = malloc(sizeof(char) * 100));
assert(some_data);

Public Interface

	
typedef int osd_result

	Standard return type

	
OSD_OK

	Return code: The operation was successful

	
OSD_ERROR_FAILURE

	Return code: Generic (unknown) failure

	
OSD_ERROR_DEVICE_ERROR

	Return code: debug system returned a failure

	
OSD_ERROR_DEVICE_INVALID_DATA

	Return code: received invalid or malformed data from device

	
OSD_ERROR_COM

	Return code: failed to communicate with device

	
OSD_ERROR_TIMEDOUT

	Return code: operation timed out

	
OSD_ERROR_NOT_CONNECTED

	Return code: not connected to the device

	
OSD_ERROR_PARTIAL_RESULT

	Return code: this is a partial result, not all requested data was obtained

	
OSD_ERROR_ABORTED

	Return code: operation aborted

	
OSD_ERROR_CONNECTION_FAILED

	Return code: connection failed

	
OSD_ERROR_OOM

	Return code: Out of memory

	
OSD_ERROR_FILE

	Return code: file operation failed

	
OSD_ERROR_MEM_VERIFY_FAILED

	Return code: memory verification failed

	
OSD_ERROR_WRONG_MODULE

	Return code: unexpected module type

	
OSD_FAILED(rv)

	Return true if |rv| is an error code

	
OSD_SUCCEEDED(rv)

	Return true if |rv| is a successful return code

osd_memaccess class

Access a memory in the system (high-level API).

Usage

#include <osd/osd.h>
#include <osd/memaccess.h>

Public Interface

Functions

	
osd_result osd_memaccess_new(struct osd_memaccess_ctx ** ctx, struct osd_log_ctx * log_ctx, const char * host_controller_address)

	Create a new context object

	
osd_result osd_memaccess_connect(struct osd_memaccess_ctx * ctx)

	Connect to the host controller

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_disconnect()

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	
osd_result osd_memaccess_disconnect(struct osd_memaccess_ctx * ctx)

	Shut down all communication with the device

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_run()

	Parameters

	
	ctx: the osd_hostmod context object

	
bool osd_memaccess_is_connected(struct osd_memaccess_ctx * ctx)

	Is the connection to the device active?

	Return

	1 if connected, 0 if not connected

	See

	osd_hostmod_connect()

	See

	osd_hostmod_disconnect()

	Parameters

	
	ctx: the osd_hostmod context object

	
void osd_memaccess_free(struct osd_memaccess_ctx ** ctx_p)

	Free the context object

	
osd_result osd_memaccess_cpus_start(struct osd_memaccess_ctx * ctx, unsigned int subnet_addr)

	(Re-)Start all CPUs in the subnet

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_memaccess_cpus_stop()

	Parameters

	
	ctx: the context object

	subnet_addr: the subnet to start all CPUs in

	
osd_result osd_memaccess_cpus_stop(struct osd_memaccess_ctx * ctx, unsigned int subnet_addr)

	Stop all CPUs in the given subnet to avoid interfering with the memory access

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_memaccess_cpus_start()

	Parameters

	
	ctx: the context object

	subnet_addr: the subnet to stop all CPUs in

	
osd_result osd_memaccess_find_memories(struct osd_memaccess_ctx * ctx, unsigned int subnet_addr, struct osd_mem_desc ** memories, size_t * num_memories)

	Get all memories in a subnet

	Return

	OSD_OK if the operation was successful OSD_ERROR_PARTIAL_RESULT not all memories could be enumerated any other value indicates an erorr

	Parameters

	
	ctx: the context object

	subnet_addr: the subnet to find memories in

	[out] the: memories found in the subnet

	[out] the: number of entries in the memories array

	
osd_result osd_memaccess_loadelf(struct osd_memaccess_ctx * ctx, const struct osd_mem_desc * mem_desc, const char * elf_file_path, bool verify)

	Load an ELF file into a memory

	Parameters

	
	ctx: the context object

	mem_desc: the memory to load the data into

	elf_file_path: file system path to the ELF file to be loaded

	verify: verify the write operation by reading the file back and and compare the data.

	OSD_OK: if successful, any other value indicates an error

osd_systracelogger class

Obtain and decode a system trace (high-level API).

System traces are typically obtained by a STM module, which in turn gathers this information using processor-specific mechanisms (such as observing nop instructions, or writes to special registers).
System traces are streams of (id, value) tuples.
Some ids have a specification-defined meaning and can be decoded in a special way.
Most commonly, id 4 is used to transmit a single printed character from the software, providing an easy way to “print” data from software through the debug system to the host PC.
osd_systracelogger contains functions to decode such streams of characeters and write them to a file.

Usage

#include <osd/osd.h>
#include <osd/systracelogger.h>

Public Interface

Functions

	
osd_result osd_systracelogger_new(struct osd_systracelogger_ctx ** ctx, struct osd_log_ctx * log_ctx, const char * host_controller_address, uint16_t stm_di_addr)

	Create a new context object

	
osd_result osd_systracelogger_connect(struct osd_systracelogger_ctx * ctx)

	Connect to the host controller

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_disconnect()

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	
osd_result osd_systracelogger_disconnect(struct osd_systracelogger_ctx * ctx)

	Shut down all communication with the device

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_run()

	Parameters

	
	ctx: the osd_hostmod context object

	
bool osd_systracelogger_is_connected(struct osd_systracelogger_ctx * ctx)

	Is the connection to the device active?

	Return

	1 if connected, 0 if not connected

	See

	osd_hostmod_connect()

	See

	osd_hostmod_disconnect()

	Parameters

	
	ctx: the osd_hostmod context object

	
void osd_systracelogger_free(struct osd_systracelogger_ctx ** ctx_p)

	Free the context object

	
osd_result osd_systracelogger_start(struct osd_systracelogger_ctx * ctx)

	Start collecting system logs

Instruct the STM module to start sending traces to us.

	
osd_result osd_systracelogger_stop(struct osd_systracelogger_ctx * ctx)

	Stop collecting system logs

	
osd_result osd_systracelogger_set_sysprint_log(struct osd_systracelogger_ctx * ctx, FILE * fp)

	Set a file to write all sysprint output to

	
osd_result osd_systracelogger_set_event_log(struct osd_systracelogger_ctx * ctx, FILE * fp)

	Set a file to write all received STM events to

osd_coretracelogger class

Obtain and decode a core trace (high-level API).

Usage

#include <osd/osd.h>
#include <osd/coretracelogger.h>

Public Interface

Functions

	
osd_result osd_coretracelogger_new(struct osd_coretracelogger_ctx ** ctx, struct osd_log_ctx * log_ctx, const char * host_controller_address, uint16_t ctm_di_addr)

	Create a new context object

	
osd_result osd_coretracelogger_connect(struct osd_coretracelogger_ctx * ctx)

	Connect to the host controller

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_disconnect()

	Parameters

	
	ctx: the osd_hostmod_ctx context object

	
osd_result osd_coretracelogger_disconnect(struct osd_coretracelogger_ctx * ctx)

	Shut down all communication with the device

	Return

	OSD_OK on success, any other value indicates an error

	See

	osd_hostmod_run()

	Parameters

	
	ctx: the osd_hostmod context object

	
bool osd_coretracelogger_is_connected(struct osd_coretracelogger_ctx * ctx)

	Is the connection to the device active?

	Return

	1 if connected, 0 if not connected

	See

	osd_hostmod_connect()

	See

	osd_hostmod_disconnect()

	Parameters

	
	ctx: the osd_hostmod context object

	
void osd_coretracelogger_free(struct osd_coretracelogger_ctx ** ctx_p)

	Free the context object

	
osd_result osd_coretracelogger_start(struct osd_coretracelogger_ctx * ctx)

	Start collecting system logs

Instruct the STM module to start sending traces to us.

	
osd_result osd_coretracelogger_stop(struct osd_coretracelogger_ctx * ctx)

	Stop collecting system logs

	
osd_result osd_coretracelogger_set_log(struct osd_coretracelogger_ctx * ctx, FILE * fp)

	Set a file to write all log output to

	Return

	OSD_OK if successful, any other value indicates an error

	Parameters

	
	ctx: context object

	fp: a file pointer to write the logs to

	
osd_result osd_coretracelogger_set_elf(struct osd_coretracelogger_ctx * ctx, const char * elf_filename)

	Set the path to the ELF file used to decode the core trace events

To disable ELF parsing, set elf_filename to NULL.

	Return

	OSD_OK when reading the ELF file succeeded any other value indicates an error

	Parameters

	
	ctx: context object

	elf_filename: path to the ELF file. Set to NULL to disable ELF parsing.

OSD Software User Guides

Todo

missing content

man-page like documentation for the tools in tools/*

Index

 C
 | O

C

 	
 	cl_cdm_cpureg_read (C function)

 	
 	cl_cdm_cpureg_write (C function)

O

 	
 	osd_cl_cdm_get_desc (C function)

 	osd_cl_cdm_handle_event (C function)

 	osd_cl_ctm_get_desc (C function)

 	osd_cl_ctm_handle_event (C function)

 	osd_cl_mam_get_mem_desc (C function)

 	osd_cl_mam_read (C function)

 	osd_cl_mam_write (C function)

 	osd_cl_scm_cpus_start (C function)

 	osd_cl_scm_cpus_stop (C function)

 	osd_cl_scm_get_subnetinfo (C function)

 	osd_cl_stm_add_to_print_buf (C function)

 	osd_cl_stm_get_desc (C function)

 	osd_cl_stm_handle_event (C function)

 	osd_cl_stm_is_print_event (C function)

 	osd_cl_stm_print_buf_free (C function)

 	osd_cl_stm_print_buf_new (C function)

 	osd_coretracelogger_connect (C function)

 	osd_coretracelogger_disconnect (C function)

 	osd_coretracelogger_free (C function)

 	osd_coretracelogger_is_connected (C function)

 	osd_coretracelogger_new (C function)

 	osd_coretracelogger_set_elf (C function)

 	osd_coretracelogger_set_log (C function)

 	osd_coretracelogger_start (C function)

 	osd_coretracelogger_stop (C function)

 	osd_gateway_connect (C function)

 	osd_gateway_disconnect (C function)

 	osd_gateway_free (C function)

 	osd_gateway_get_transfer_stats (C function)

 	osd_gateway_is_connected (C function)

 	osd_gateway_new (C function)

 	osd_hostctrl_free (C function)

 	osd_hostctrl_is_running (C function)

 	osd_hostctrl_new (C function)

 	osd_hostctrl_start (C function)

 	osd_hostctrl_stop (C function)

 	osd_hostmod_connect (C function)

 	osd_hostmod_disconnect (C function)

 	osd_hostmod_event_receive (C function)

 	osd_hostmod_event_send (C function)

 	osd_hostmod_free (C function)

 	osd_hostmod_get_diaddr (C function)

 	osd_hostmod_get_max_event_words (C function)

 	osd_hostmod_get_modules (C function)

 	osd_hostmod_is_connected (C function)

 	osd_hostmod_log_ctx (C function)

 	osd_hostmod_mod_describe (C function)

 	osd_hostmod_mod_set_event_active (C function)

 	osd_hostmod_mod_set_event_dest (C function)

 	
 	osd_hostmod_new (C function)

 	osd_hostmod_reg_read (C function)

 	osd_hostmod_reg_setbit (C function)

 	osd_hostmod_reg_write (C function)

 	osd_log_free (C function)

 	osd_log_get_caller_ctx (C function)

 	osd_log_get_priority (C function)

 	osd_log_new (C function)

 	osd_log_set_caller_ctx (C function)

 	osd_log_set_fn (C function)

 	osd_log_set_priority (C function)

 	osd_memaccess_connect (C function)

 	osd_memaccess_cpus_start (C function)

 	osd_memaccess_cpus_stop (C function)

 	osd_memaccess_disconnect (C function)

 	osd_memaccess_find_memories (C function)

 	osd_memaccess_free (C function)

 	osd_memaccess_is_connected (C function)

 	osd_memaccess_loadelf (C function)

 	osd_memaccess_new (C function)

 	osd_packet_combine (C function)

 	osd_packet_dump (C function)

 	osd_packet_equal (C function)

 	osd_packet_fread (C function)

 	osd_packet_free (C function)

 	osd_packet_fwrite (C function)

 	osd_packet_get_dest (C function)

 	osd_packet_get_src (C function)

 	osd_packet_get_type (C function)

 	osd_packet_get_type_sub (C function)

 	osd_packet_log (C function)

 	osd_packet_new (C function)

 	osd_packet_new_from_zframe (C function)

 	osd_packet_realloc (C function)

 	osd_packet_set_header (C function)

 	osd_packet_set_type_sub (C function)

 	osd_packet_sizeconv_data2payload (C function)

 	osd_packet_sizeconv_payload2data (C function)

 	osd_packet_sizeof (C function)

 	osd_packet_to_string (C function)

 	osd_systracelogger_connect (C function)

 	osd_systracelogger_disconnect (C function)

 	osd_systracelogger_free (C function)

 	osd_systracelogger_is_connected (C function)

 	osd_systracelogger_new (C function)

 	osd_systracelogger_set_event_log (C function)

 	osd_systracelogger_set_sysprint_log (C function)

 	osd_systracelogger_start (C function)

 	osd_systracelogger_stop (C function)

 _static/comment-close.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Open SoC Debug Software Reference Implementation

_static/up-pressed.png

_static/ajax-loader.gif

_images/seqdiag-24bb8fc2052e260e16d9b1e34421cb278c045262.png
host module host controller

DIADDR RELEASE
DIADDRRELEASE

). ACK or NAC

_images/seqdiag-7b772d4a5e045ea5909b3a6ccb5954297477a88a.png
host module host controller

DIADDR REQ
DADDRREQ

« <ADDRESS?

_static/comment-bright.png

