
Open SoC Debug Documentation
Library

Release 0.1

The Open SoC Debug Contributors

Mar 28, 2020

Documentation Parts

1 Overview Documentation 3

2 The Open SoC Debug Specification 9

3 User Guides 43

4 Implementer Documentation 45

5 Vendor Identifier Registry 49

6 Licensing 51

Index 53

i

ii

Open SoC Debug Documentation Library, Release 0.1

The Open SoC Debug Project provides a full-stack debug solution. The documentation provided caters to dif-
ferent audiences, from people interested in a high-level overview, to users of Open SoC Debug, to developers
implementing OSD in their projects, or even contributing to OSD itself.

The Overview Documents provide a general big-picture introduction to the ideas and concepts of OSD. They are
written for a wide technical and non-technical audience.

The Open SoC Debug Specification describes the architecture and components of OSD. It is written for developers
implementing OSD in their own designs, or extending OSD with custom components.

In addition to the specification, the Open SoC Debug Project also produces an extensible reference implementa-
tion of the OSD Specification. This reference implementation, consisting both of hardware IP components and
software tools, is also documented here.

The User Guides describe how to use the tools provided by the OSD reference implementation. They are written
for developers using OSD to debug software.

The Implementer Guides aim at people who want to integrate OSD into their own SoC designs, or want to develop
software for an OSD-enabled SoC.

The Identifier Registry lists all vendor identifiers used by OSD devices and products.

Documentation Parts 1

Open SoC Debug Documentation Library, Release 0.1

2 Documentation Parts

CHAPTER 1

Overview Documentation

Understanding the general concepts behind Open SoC Debug is key to effectively use and implement it. In this
part of the documentation, we give an high-level overview of OSD.

1.1 Open SoC Debug Primer

1.1.1 About Open SoC Debug

Systems-on-Chip (SoCs) have become embedded deeply into our lives. Most of the time we enjoy the way they
serve their purpose without getting in the way. Until they don’t. In those moments, we as engineers are reminded
of the complex interplay between software and hardware in SoCs. We might pose questions like “How does my
software execute on the chip?” or “Why is it showing this exact behavior?” To answer these questions we need
insight into the system that executes the software. We gain this insight through the debug infrastructure integrated
into the SoC.

Even though debug infrastructure is an essential part of any SoC design, most people consider creating it more of
a necessary chore than an exciting endeavor. Therefore, most vendors today include debug infrastructure that fol-
lows one of two major specifications: ARM CoreSight1 and NEXUS 50012 (officially called “IEEE-ISTO 5001”).
Unfortunately, none of these specifications are fully open, they cannot be used without any money involved.

The Open SoC Debug (OSD) specification was created to close this gap. Three key messages guide its design.

• OSD is a truly open (source) specification. Without any committee membership required or royalty fees
to be payed, anyone can freely

– share and modify the specification itself, and

– create and distribute implementations of the specification for any purpose.

• OSD is for debugging and tracing. A debugging infrastructure by itself is not a solution, but a toolbox
providing the right tool for the task. Some bugs are best hunted using run-control debugging, some are
better found using tracing. OSD supports both, enabling hardware and software developers to pick what’s
best for their needs.

• OSD provides the common and enables the special. SoCs came to live because they allow reuse of
components and specialization at the same time, letting hardware designers focus on the unique challenges

1 http://www.arm.com/products/system-ip/debug-trace/
2 http://nexus5001.org/

3

http://www.arm.com/products/system-ip/debug-trace/
http://nexus5001.org/

Open SoC Debug Documentation Library, Release 0.1

without re-inventing the wheel. OSD follows this lead. Common IP blocks, interfaces and software tools
can be re-used, and multiple extension vectors allow for easy customization where necessary.

Scope

By implementing Open SoC Debug, a SoC gains the following features (to a varying and implementation-defined
degree).

• Support for run-control debugging, i.e. setting breakpoints and watchpoints and reading register values. In
short, all you need to attach a debugger like GDB to the SoC.

• Support for tracing, i.e. non-intrusively observing the program execution on the SoC.

• Support for remotely controlling the SoC during development, e.g. starting the CPUs, resetting the system,
and reading and writing the memories.

To provide these features, this specification defines

• an extensible debug system architecture, covering both hardware and host software,

• templates with well-defined interfaces for debug and trace IP blocks (“debug modules”),

• a set of common debug modules for the most frequent run-control debug and tracing tasks,

• a host-side software programming interface (API) for debug tools to interact with an OSD-enabled debug
system.

In addition, implementations of many components described in the OSD specification are made available under a
permissive open source license which can be used directly in custom designs.

Current Status

OSD is an evolving effort. Currently, we target the first release of the base specification and module specification,
that contain the following parts:

• Basic interfaces and transport protocols

• A generic and mandatory memory map for all debug modules to allow enumeration, capabilities and ver-
sioning

• Basic modules for run-control and trace debugging

This is just the start that covers the very basic functionality, but more features are planned to be added to the
specification in the near future: tracing to memory instead of host, device traces, module triggering, cross-triggers,
on-chip aggregation and filtering, sophisticated interconnects, just to mention a few.

1.1.2 About This Document

This document gives an overview of Open SoC Debug. The goal is to provide interested designers SoC hardware
components as well as developers of debugging software tools a good understanding of the overall picture and the
reasoning behind the design of OSD. This document is not the specification itself. Please refer to the individual
sub-documents for the exact wording of the specification.

1.1.3 High-Level Features

By implementing OSD, a SoC can easily be enhanced with advanced debug functionality. This section describes
these features in more detail.

4 Chapter 1. Overview Documentation

Open SoC Debug Documentation Library, Release 0.1

Run-Control Debug

Run-control debugging, a.k.a. breakpoint debugging, “stop-and-stare” debugging, or just “debugging,” is the most
common way of finding problems in software at early stages of development. Using software tools like the GNU
Debugger (gdb) breakpoints can be set in the software code. If this point in the program reached, the program
execution is stalled and the program control is handed over to the debugger. Using the debugger, a developer can
now read register or memory values, print stack traces, and much more. To be efficient, run-control debugging
functionality needs hardware support to stop the program execution at a given time. In addition, run-control
debugging on SoC platforms is usually done remotely, i.e. the system is controlled from a host PC, as opposed to
running the debugger directly on the SoC.

OSD contains all parts to add run-control debug support to a SoC. On the hardware side, OSD interfaces with the
CPU core(s) to control its behavior. On the host side, OSD provides a daemon that GDB can connect to. The
actual debugging is then handled by GDB and the usage of OSD is transparent to the software developer.

Tracing

Today’s heterogeneous multi-core designs present new challenges to software developers. Concurrent software
distributed across multiple CPUs and hardware accelerators, interacting with complex I/O interfaces and strict
real-time requirements is the new normal. This results in new classes of bugs which are hard to find, like race
conditions, deadlocks, and severely degraded performance for no obvious reason. To find such bugs, run-control
debugging is not applicable: setting a breakpoint disturbs the temporal relationship between the different threads
of execution. This disturbance to the program execution is called “probe effect” and can cause the original problem
to disappear when searching for it, a phenomenon known as “Heisenbug.”

Tracing avoids these problems by unobtrusively monitoring the program execution and transferring the observa-
tions off-chip. There, the program flow can be reconstructed and the program behavior analyzed.

OSD comes with components to enable tracing for not only CPU cores, but also for any component in the SoC,
such as memories, hardware accelerators, and interconnects.

Memory Access

Reading and writing memories is an essential tool during bring-up and debugging of a SoC. A typical use case is
to write software to a program memory from the host PC, to avoid writing it for example to a SD card or flash
memory and then resetting the system.

OSD ships with a module that can be attached to a memory to support reads and writes from and to memories.

System Discovery

Users of today’s debug systems know the pain: setting up a debugger on a host PC to communicate with the
hardware often requires obscure configuration settings, secret switches and a bit of magic sauce to make it all
work.

OSD is designed to be plug-and-play. All hardware components are self-describing. When a host connects to the
system, it first enumerates all available components, and reads necessary configuration bits.

Timestamping

Timestamps are monotonically increasing numbers which are attached to events generated by the debug system.
(They usually do not correspond in any way to wall-clock time.) Timestamps enable correlation of events in
different parts of the chip with each other. Additionally, they can be used to restore order to events which are (for
some reason) out of order when they arrive.

While timestamps are useful in many cases, adding them to all events generated by the debug system can signifi-
cantly increase the overhead of such events.

1.1. Open SoC Debug Primer 5

Open SoC Debug Documentation Library, Release 0.1

Currently OSD supports timestamps which are full numbers of configurable width. Some debug modules can be
configured to enable or disable timestamp generation.

The timestamping method used in OSD is referred to as “source timestamps” in some debug systems. Timestamps
are added to the trace data at the source, as opposed to (e.g.) adding timestamps when the data is received by a
debug adapter hardware between the SoC and the host PC.

Security and Authentication

Any debug system, by nature, exposes much of the system internals to the outside world. To prevent abuse of the
debug system, production devices often require a developer to authenticate towards the system before being able
to use the debug system.

OSD provides the infrastructure to implement such features.

1.1.4 OSD By Example

Before we dive into the details of the OSD architecture, this section discusses two typical usage examples of OSD.
The first example only shows run-control debugging, the second one presents a full tracing infrastructure.

OSD for Run-Control Debugging

Many smaller single-core designs traditionally only support run-control debugging through custom JTAG-based
debug infrastructure. OSD supports this use case well. Its modular architecture makes it easy to implement only
essential debug modules to support run-control debug, and to add advanced features such as trace later without
major changes.

core debug
CDM

memory access

MAM

subnet control
SCM

UART emulator

DEM-UART

JTAG
(using GLIP)

h
o
st

d
a
e
m
o
n

d
e
b
u
g
n
e
tw

o
rk

CPU Core

scriptable
command

line interface

gdb server

hardwaresoftware

program or data
memory

bus

clock
manager

gdb

specified and implemented by OSD

OSD components available,
to be adapted for design

h
o
st

in
te
rf
a
ce

H
IM

third-party IP (freely usable)

Fig. 1.1: An example system using OSD for run-control debugging

Figure 1.1 shows an example configuration of OSD for a small run-control debug scenario. The functional system
(to be attached on the right side) consists of a single-core CPU, a memory and a bus interconnect. To this functional
system the debug modules are attached.

• The Subnet Control Module (SCM) module allows to control the system remotely: reset the system, halt
the system, reset the CPUs, etc.

• The Core Debug Module (CDM) provides all functionality expected from a run-control debug system:
setting breakpoints and reading CPU registers.

6 Chapter 1. Overview Documentation

Open SoC Debug Documentation Library, Release 0.1

• The Memory Access Module (MAM) gives access to the chip’s memories for loading the memories during
debugging (e.g. with the program code), to verify the memory contents, or to read out memory contents
during debugging.

• To show the benefits of using OSD, the example system adds another module, the Device Emulation Module
UART (DEM-UART). This module behaves on the functional hardware side, and on the software side
like a usual UART device. But instead of using dedicated pins, the data is transported through the debug
connection.

For all mentioned components, OSD includes a full specifications which enables a custom implementation, as well
as a hardware implementation that can be used unmodified or adapted to fit the interface to the custom functional
system.

The debug modules are all connected to a debug network. The OSD specification does not require a specific net-
work topology or implementation type. However, usually OSD implementations use a 16-bit wide, unidirectional
ring network on chip (NoC), as it presents a good trade-off between area usage and performance.

To connect with a host PC, three further components are needed: the Host Interface Module (HIM) on the hardware
side, a GLIP transport module, and a software daemon on the host side.

The transport of data between host and device is handled by GLIP3. GLIP is a library which abstracts the data
transport between hardware and software with a bi-directional FIFO interface. The data transport itself can happen
through different physical interfaces, such as UART, JTAG, USB or PCI Express (PCIe). In the presented example,
a JTAG connection is used. A possibly existing JTAG boundary scan interface can be re-used and a new Test
Access Point (TAP) is added to the JTAG chain for the debug connection.

The Host Interface Module (HIM) connects the debug network to the FIFO-interface of GLIP.

On the software side, the OSD host daemon encapsulates the communication to the device and provides a API for
various tools communicating with the debug system. A scriptable command line interface can be used to control
the system (such as reset, halt, etc.) and to read and write memories. A gdb server provides an interface to the
core debug functionality that the GNU Debugger (gdb) can connect to. In the end, software can be debugged with
an unmodified gdb (and other gdb-enabled IDEs, such as Eclipse CDT).

OSD for Tracing

Today’s debug system architectures strictly separate between run-control debugging and tracing. The example be-
low shows how OSD units the two worlds with a common interface, thus reducing development and maintainance
effort. Since most of the architecture is shared between run-control debugging and tracing, upgrading an existing
design from run-control debugging to tracing is not a large step.

Figure 1.2 shows an example architecture of a OSD system with tracing support for a dual-core design. Most of
the architecture is identical to the previous example: the host daemon, the HIM, the debug network and the SCM,
CDM and MAM debug modules. New in this example are the following parts.

• The GLIP transport library now uses USB 2.0 instead of JTAG for communication. This allows for higher
off-chip transfer speeds to get improved visibility into the system by tracing.

• The Core Trace Module (CTM) provides program trace (a.k.a. instruction trace) support. It is attached to
the CPU core next to the CDM.

• A graphical trace viewer can be attached to the host daemon to view the traces. Currently, OSD does not
come with such a tool, but all interfaces are provided to easily write such a tool.

The two examples in this section have already shed a light on what is possible with OSD. In the remainder of this
document, we’ll discuss OSD in more depth, starting with a more general overview of the architecture.

3 http://glip.io

1.1. Open SoC Debug Primer 7

http://glip.io

Open SoC Debug Documentation Library, Release 0.1

core debug
CDM

memory access

MAM

subnet control
SCM

USB 2.0
(using GLIP)

h
o
st

d
a
e
m
o
n

d
e
b
u
g
n
e
tw

o
rk CPU Core 0

scriptable
command

line interface

gdb server

hardwaresoftware

program or data
memory

clock
manager

gdb

specified and implemented by OSD

OSD components available,
to be adapted for design

h
o
st

in
te
rf
a
ce

H
IM

third-party IP (freely usable)

core trace
CTM

core debug
CDM

CPU Core 1

core trace
CTM

trace viewer

custom additions, not part of OSD

Fig. 1.2: An example system dual-core system using OSD tracing

8 Chapter 1. Overview Documentation

CHAPTER 2

The Open SoC Debug Specification

2.1 Preface

2.1.1 About this specification

This specification describes Open SoC Debug (OSD), an extensible infrastructure adding debug and trace support
to a System-on-Chip.

Target audience

This specification targets all people involved in the design and implementation of software or hardware products
using Open SoC Debug. Explicitly, this specification targets

• Hardware designers integrating Open SoC Debug in their System-on-Chip designs.

• Hardware designers extending Open SoC Debug, for example by writing own OSD modules.

• Software developers writing software tools interacting with an OSD-enabled SoC.

2.1.2 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 21194.

Unless noted otherwise, numbers are written in decimal (base 10) representation. Hexadecimal numbers (base 16)
are prefixed with “0x”, binary numbers (base 2) are prefixed with “0b”.

Bit fields given in the form MSB:LSB, as commonly used in Verilog and VHDL. Both MSB and LSB are included
in the range.

Ranges are given as UPPER BOUND .. LOWER BOUND. Both bounds are included in the range.

4 https://tools.ietf.org/html/rfc2119.html

9

https://tools.ietf.org/html/rfc2119.html

Open SoC Debug Documentation Library, Release 0.1

2.1.3 Terms

• Target. The component which is being observed through Open SoC Debug. Usually, this is a physical chip
(e.g. an ASIC or an FPGA).

• Host. The component which observes the target. Typically, this is a regular PC, but it the same functionality
could also be performed by a special-purpose hardware unit.

• Conforming implementation. A implementation of the Open SoC Debug specification which includes all
required functionality as defined in this specification.

2.2 Introduction

To develop, debug and improve software running on Systems-on-Chip (SoC), developers need access to the SoC’s
internal structures. Developers need to observe the program execution to understand how the software is executed,
and they need control over the software execution from a remote system. The Open SoC Debug (OSD) is an
extensible, modular specification which enhances SoCs with such debug and tracing functionality.

The functionality of Open SoC Debug can be placed in three groups:

• Run-Control debug functionality. The software execution on the SoC is temporarily suspended and control
over the execution flow is handed over to a software tool, the “debugger.”

• Tracing functionality. The software execution is observed and the resulting observations are transferred out
of the chip, but the execution is not halted or otherwise modified.

• Internal system access. During the process of software development, fast and hassle-free access to the SoC
is required. For example, the program code can be written into the RAM directly, instead of loading it from
persistent storage, such as flash memory.

Open SoC Debug is a modular and extensible specification, acknowledging the fact that every SoC and every
target market has its different design goals and thus requires different trade-offs.

This document, the Open SoC Debug specification, contains both required and optional parts. The required parts
MUST be implemented by any conforming implementation of Open SoC Debug, the optional parts MAY be
implemented.

In addition to this specification, the Open SoC Debug Contributors have also developed a reference implementation
of many components described in this specification. It is provided as a starting point for own developments.
However, independent implementations following this specification are encouraged.

2.3 Open SoC Debug Architecture

2.3.1 Architecture Overview

In Open SoC Debug, software and hardware components form together an extensible architecture.

physical
transport

h
o
st

so
ft
w
a
re

d
e
b
u
g
in
te
rc
o
n
n
e
ct

S
o
C
co
m
p
o
n
e
n
tsdebug

tool

debug
tool

debug
module

debug
module

debug
module

targethost

Fig. 2.1: High-level overview of the Open SoC Debug architecture.

10 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Figure 2.1 shows the different components in a typical Open SoC Debug-based debug system.

• Debug modules (shown on the right) monitor or interact with the functional components of the SoC. To-
wards the functional SoC the interface is implementation-specific. Towards the debug interconnect the
modules conform to a standardized interface, which is specified in this document. Also included in this
specification is a description of common debug modules, some of which are must be implemented by any
conforming implementation, others which are optional. Debug modules are self-describing and discover-
able from the target at runtime through a standardized programmer interface, which is also described in this
specification. All debug modules are given an address, which is used in all communication with the module.

• The debug interconnect is used to exchange data between debug modules, and between the target and the
host. The format of the data transmitted over the debug interconnect (the Debug Packets, DP), as well as
the interface between debug modules and the debug interconnect (the Debug Interconnect Interface, DII)
are specified in this document.

• The physical transport connects the target to the host. The OSD specification does not cover the physical
transport. However, an example implementation is given as part of the reference implementation.

• Host software implements the low-level interface to connect and interact with an OSD-enabled system.
While the OSD project has created a reference implementation for the host software, its usage is not manda-
tory and it is not part of this specification.

• Finally, debug tools use the debug system to perform debugging and analysis tasks, ranging from run-
control debugging to tracing and runtime verification. Debug tools can be implemented on top of Open SoC
Debug, but are not part of this specification.

The OSD specification is designed with extensibility in mind. Well-defined extension vectors can be used to
customize the behavior of OSD and adapt OSD to different target systems. If little or no customization is required,
the reference implementation can serve as a good starting point to reduce engineering cost.

2.4 Data Exchange Formats

2.4.1 Introduction

Interaction between components in OSD requires that a common “language” is spoken. The data exchange formats
described in this chapter are this “language,” they are employed between OSD modules, as well as between the
host and the OSD-enabled target.

2.4.2 General Considerations

In Open SoC Debug, the native word width is 16 bit. The byte ordering is big endian. Exceptions are mentioned
explicitly in the specification.

2.4.3 The Debug Packet

The main data exchange format in OSD is the Debug Packet (DP). A Debug Packet is a routable and typed piece
of information, consisting of

• a destination address

• a source address

• a type

• a payload

The payload format depends on the type of the packet. For some types the payload format is strictly specified,
while other types can be used to transfer data which is not specified in this specification.

2.4. Data Exchange Formats 11

Open SoC Debug Documentation Library, Release 0.1

Length Limitations

Each debug packet consists of at least three 16 bit wide words. A packet MUST NOT consist of more than
216 − 1 = 65535 words, including all headers. Implementations MAY impose a lower limit, but the limit may not
be less than 12 words.

The maximum packet length within a subnet can be determined by reading the MAX_PKT_LEN register from the
SCM module.

Debug Packet Structure

A Debug Packet consists of a multiple words as described in the table below.

Table 2.1: Debug Packet (DP) Structure
Word Name Description
0 DEST Packet destination address
1 SRC Packet source address
2 FLAGS Packet flags
3 ..
packet
size

PAYLOAD Payload (content) of the Debug Packet

Table 2.2: Field Reference: FLAGS
Bit(s) Field Description
15:14 TYPE Packet Type

0b00: REG (Register Access) Access to a register in a debug module. Reg-
ister accesses are synchronous read and write operations on a debug
module.

0b01: RESERVED for future use Implementations MUST discard pack-
ets of this type.

0b10: EVENT (Debug Event) Unsolicited debug event generated by any
of the debug modules. The payload of Debug Packets of this type is
module-specific.

0b11: RESERVED for future use Implementations MUST discard pack-
ets of this type.

13:10 TYPE_SUB Packet Subtype
The packet subtype refines the packet type (TYPE). Allowed values depend
on the TYPE field.

9:0 RESERVED Reserved
Reserved space for future extensions. Senders must set this field to zero,
receivers must ignore its contents.

Register access (TYPE == REG)

Register accesses are Debug Packets which access a single register in a debug module. All accesses are syn-
chronous: read requests trigger a read response, write requests are acknowledged.

All register accesses must set the TYPE field of a Debug Packet to REG. The field TYPE_SUB describes the type
of register access, allowed values are listed in the following table.

12 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Table 2.3: Reference of Debug Packet subtypes for register accesses
Field Name TYPE_SUB Value Description
REQ_READ_REG_16 0b0000 16 bit register read request
REQ_READ_REG_32 0b0001 32 bit register read request
REQ_READ_REG_64 0b0010 64 bit register read request
REQ_READ_REG_128 0b0011 128 bit register read request
RESP_READ_REG_SUCCESS_16 0b1000 16 bit register read response
RESP_READ_REG_SUCCESS_32 0b1001 32 bit register read response
RESP_READ_REG_SUCCESS_64 0b1010 64 bit register read response
RESP_READ_REG_SUCCESS_128 0b1011 128 bit register read response
RESP_READ_REG_ERROR 0b1100 register read failure
REQ_WRITE_REG_16 0b0100 16 bit register write request
REQ_WRITE_REG_32 0b0101 32 bit register write request
REQ_WRITE_REG_64 0b0110 64 bit register write request
REQ_WRITE_REG_128 0b0111 128 bit register write request
RESP_WRITE_REG_SUCCESS 0b1110 the preceding write request was successful
RESP_WRITE_REG_ERROR 0b1111 the preceding write request failed

Register read request (TYPE_SUB == REQ_READ_REG_*)

Read from a single register. Reads from 16, 32, 64 and 128 bit wide registers are supported, the appropriate DP
Subtype (TYPE_SUB) must be used to select the register width. The address ADDR must be 16 bit wide. ADDR
addresses 16 bit and must be aligned to the register size.

A debug module MUST respond with a RESP_READ_REG_SUCCESS_* of the same size as the read in case of
a successful read, or a RESP_READ_REG_ERROR Debug Packet in case of an error.

Table 2.4: Debug Packet payload for register read requests (TYPE ==
REG && TYPE_SUB == REQ_READ_REG_*)

Payload
word

Field name Description

0 ADDR Register address to read from

Register read response (TYPE_SUB == RESP_READ_REG_SUCCESS_*)

The preceding register read request (TYPE_SUB == REQ_READ_REG_*) was successful, the payload is the
data read from the address given in the request.

Table 2.5: Debug Packet payload for a response to a 16 bit register read
request (TYPE_SUB == RESP_READ_REG_SUCCESS_16)

Payload
word

Field name Description

0 DATA[15:0] data word read from the register

Table 2.6: Debug Packet payload for a response to a 32 bit register read
request (TYPE_SUB == RESP_READ_REG_SUCCESS_32)

Payload
word

Field name Description

0 DATA[31:16] bits 31 to 16 of the data read from the register (most significant word)
1 DATA[15:0] bits 15 to 0 of the data read from the register (least significant word)

2.4. Data Exchange Formats 13

Open SoC Debug Documentation Library, Release 0.1

Table 2.7: Debug Packet payload for a response to a 64 bit register read
request (TYPE_SUB == RESP_READ_REG_SUCCESS_64)

Payload
word

Field name Description

0 DATA[63:48] bits 63 to 48 of the data read from the register (most significant word)
1 DATA[47:32] bits 47 to 32 of the data read from the register
2 DATA[31:16] bits 31 to 16 of the data read from the register
3 DATA[15:0] bits 15 to 0 of the data read from the register (least significant word)

Table 2.8: Debug Packet payload for a response to a 128 bit register read
request (TYPE_SUB == RESP_READ_REG_SUCCESS_128)

Payload
word

Field name Description

0 DATA[127:112] bits 127 to 112 of the data read from the register (most significant word)
1 DATA[111:96] bits 111 to 96 of the data read from the register
2 DATA[95:80] bits 95 to 80 of the data read from the register
3 DATA[79:64] bits 79 to 64 of the data read from the register
4 DATA[63:48] bits 63 to 48 of the data read from the register
5 DATA[47:32] bits 47 to 32 of the data read from the register
6 DATA[31:16] bits 31 to 16 of the data read from the register
7 DATA[15:0] bits 15 to 0 of the data read from the register (least significant word)

Register error read response (TYPE_SUB == RESP_READ_REG_ERROR)

The preceding register read request to this module failed for some reason.

Register write request (TYPE_SUB == REQ_WRITE_REG_*)

Writes to a register. Writes to 16, 32, 64 and 128 bit wide registers are supported, the appropriate DP Subtype
(TYPE_SUB) must be used to select the register width. The address ADDR must be 16 bit wide. ADDR addresses
16 bit and must be aligned to the register size.

A debug module MUST respond with a RESP_WRITE_REG_SUCCESS Debug Packet in case the write was
executed successfully, or a RESP_WRITE_REG_ERROR Debug Packet if the write failed.

Table 2.9: Debug Packet payload for 16 bit register write requests (TYPE
== REG && TYPE_SUB == REQ_WRITE_REG_16)

Payload
word

Field name Description

0 ADDR Register address to write to
1 DATA[15:0] data word to be written to the register

Table 2.10: Debug Packet payload for 32 bit register write requests
(TYPE == REG && TYPE_SUB == REQ_WRITE_REG_32)

Payload
word

Field name Description

0 ADDR Register address to write to
1 DATA[31:16] bits 31 to 16 of the data to be written to the register (most significant word)
2 DATA[15:0] bits 15 to 0 of the data to be written to the register (least significant word)

14 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Table 2.11: Debug Packet payload for 64 bit register write requests
(TYPE == REG && TYPE_SUB == REQ_WRITE_REG_64)

Payload
word

Field name Description

0 ADDR Register address to write to
1 DATA[63:48] bits 63 to 48 of the data to be written to the register (most significant word)
2 DATA[47:32] bits 47 to 32 of the data to be written to the register
3 DATA[31:16] bits 31 to 16 of the data to be written to the register
4 DATA[15:0] bits 15 to 0 of the data to be written to the register (least significant word)

Table 2.12: Debug Packet payload for 128 bit register write requests
(TYPE == REG && TYPE_SUB == REQ_WRITE_REG_128)

Payload
word

Field name Description

0 ADDR Register address to write to
1 DATA[127:112] bits 127 to 112 of the data to be written to the register (most significant word)
2 DATA[111:96] bits 111 to 96 of the data to be written to the register
3 DATA[95:80] bits 95 to 80 of the data to be written to the register
4 DATA[79:64] bits 79 to 64 of the data to be written to the register
5 DATA[63:48] bits 63 to 48 of the data to be written to the register
6 DATA[47:32] bits 47 to 32 of the data to be written to the register
7 DATA[31:16] bits 31 to 16 of the data to be written to the register
8 DATA[15:0] bits 15 to 0 of the data to be written to the register (least significant word)

Register write response: successful (TYPE_SUB == RESP_WRITE_REG_SUCCESS)

The preceding register write request to the module was successful (write acknowledgement).

Unless explicitly documented in the module documentation, the RESP_WRITE_REG_SUCCESS implies that all
actions triggered by the corresponding register write have been executed fully.

Register write response: error (TYPE_SUB == RESP_WRITE_REG_ERROR)

The preceding register write request to the module was not successful.

Event Debug Packets (EVENT)

Debug Events are Debug Packets sent by a debug module without being explicitly triggered by the host or by
another module. The main purpose of Debug Events is to transport trace data, but they can also be used for other
purposes. Hence this specification does not attempt to specify the payload of event packets strictly.

Table 2.13: Reference of Debug Packet subtypes for event packets
Field Name TYPE_SUB

Value
Description

EV_LAST 0b0000 Standalone event packet, or in split event transmissions, the last packet in
the transmission

EV_CONT 0b0001 A non-last event packet in a split event transmission
EV_OVERFLOW0b0005 An overflow happened

2.4. Data Exchange Formats 15

Open SoC Debug Documentation Library, Release 0.1

Split Event Transmissions

All event packets must set the TYPE field of a Debug Packet to EVENT. Event packets must be not larger then the
maximum packet length, which can be obtained from the SCM module. If payload should be transmitted which is
larger than the maximum DI packet size the payload can be “split” into two or more packets. In this case, all but
the last event packets set TYPE_SUB to 1,

For the TYPE_SUB The field TYPE_SUB and the packet payload are defined by the debug module itself.

Overflows

If the debug system is overloaded, events may be dropped by the producer. If this happens, the producer counts
the dropped packet and sents an overflow packet once it is able to transmit again. The overflow packet contains
the number of dropped packets as only data word. Overflow packets have TYPE_SUB set to OVERFLOW.

2.5 Programmer Interface

2.5.1 Debug Module Base Register Map

To enable functionality like the discovery of debug modules, all debug modules MUST implement the “Open SoC
Debug Status & Control” registers and MUST follow the base address map.

All registers are accessed through Debug Packets of TYPE == REG.

Debug module base address map

Address Range Description
0x0000 - 0x01ff Open SoC Debug Base Registers
0x0200 - 0xffff Module-specific registers

All debug modules MUST implement the Open SoC Debug base registers.

Debug modules MAY implement any additional registers in the module-specific register space (register addresses
between 0x0200 and 0xffff).

Open SoC Debug Base Registers

All base registers are 16 bit wide.

Table 2.14: Open SoC Debug base register map
address name description
0x0000 MOD_VENDOR module vendor
0x0001 MOD_TYPE module type identifier
0x0002 MOD_VERSION module version
0x0003 MOD_CS module control and status
0x0004 MOD_EVENT_DEST destination of debug events

Module Vendor Identifier (MOD_VENDOR)

• Address: 0x0000

• Reset Value: implementation defined

16 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

• Access: read-only

The module vendor identifier is a 16 bit value. Vendor identifiers MUST be assigned by the Open SoC Debug
project before they can be used. The Open SoC Debug project SHALL provide a publicly accessible list of all
known vendors.

Note: A list of assigned vendor IDs is available online at Vendor Identifier Registry.

Module type identifier (MOD_TYPE)

• Address: 0x0001

• Reset Value: implementation defined

• Access: read-only

The module type identifier describes the module type. It is assigned by the module vendor. The combination of
MOD_VENDOR and MOD_TYPE must be descriptive for a given debug module across all conforming implementa-
tions.

Module Version (MOD_VERSION)

• Address: 0x0002

• Reset Value: implementation defined

• Access: read-only

The versions are plain numbers that identify the module version. The module version can be used by the host
software to adapt the communication protocol to the API specific to a module version. A module’s API MUST
NOT change in incompatible ways as long as the same module version is used.

Control and Status (MOD_CS)

• Address: 0x0003

• Reset Value: see the table below

• Access: see the table below

Module control and status register.

2.5. Programmer Interface 17

Open SoC Debug Documentation Library, Release 0.1

Table 2.15: Field Reference: MOD_CS
Bit(s) Field Access Reset

Value
Description

15:1 RESERVED r/w 0x0 Reserved for future use
This field is reserved for future use. Im-
plementations MUST ignore the contents
of this field.

0 MOD_CS_ACTIVE r/w 0b0 Activate or stall the debug module
0b0: Module is stalled The module is

stalled. A stalled module MAY
NOT send any debug events, i.e.
packets of TYPE == EVENT.

0b1: Module is active The module is ac-
tive. An active event MAY send de-
bug events, i.e. packets of TYPE
== EVENT.

Event Destination (MOD_EVENT_DEST)

• Address: 0x0004

• Reset Value: see the table below

• Access: see the table below

Table 2.16: Field Reference: MOD_EVENT_DEST
Bit(s) Field Access Reset

Value
Description

15:10 RESERVED r/w 0x0 Reserved for future use
This field is reserved for future use. Im-
plementations MUST ignore the contents
of this field.

9:0 MOD_EVENT_DEST_ADDR r/w 0x0 Event Packet Destination
Address of the module in the Debug Inter-
connect to which all event packets (TYPE
== EVENT) should be sent.
Changing the destination address MAY
not take immediate effect, but MUST take
effect soon after it has been set (e.g. after a
buffer has been cleared). The exact timing
behavior is implementation-defined.

2.6 Component Architecture

2.6.1 Debug Interconnect

Todo: A specification for two debug interconnects, one for control and one for tracing is still missing.

To route debug information to the correct debug module and to the host, OSD uses a simple packet-based protocol.
All data exchanged on the Debug Interconnect is formatted as Debug Packet. The Debug Interconnect Interface
(DII) defines the the hardware interface and the flow control mechanism for hardware modules interacting with
the Debug Interconnect.

18 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

One key property of the transport & switching in the Open SoC Debug specification is that it generally allows that
debug modules exchange packets between them. This enables on-chip trace processing, run-control debugging
from a special core or other methods to reduce the traffic on the host interface, which is the most critical resource
in modern debugging.

The Debug Interconnect is only loosely specified to allow implementors to choose an interconnect implementation
suitable for their target system.

General Requirements

In general, the interconnect implementation is not specified in this document, as long as it fulfills two basic
properties: - It provides strict ordering of packets with the same (source, destination) tuple. This property forbid
debug packets from one source to one destination to overtake each other in the interconnect, which is useful to
allow payload data to span multiple packets. - It is free of deadlocks.

Topology

Implementors MAY choose any interconnect topology. Figure 2.2 shows favored topologies. The baseline imple-
mentation is a simple ring interconnect. The ring balances well between clock speed, required chip area and most
importantly flexibility. It can easily span the entire chip without dominating a design.

Debug Ring

Host

Multiplexer,
Bus, Crossbar

Host

Hierarchical

Host

Fig. 2.2: Debug ring and other interconnects

Alternatively, other topologies may be favored. For example a low count of debug modules favors a multiplexer
interconnect. Especially if the debug modules are all trace debugging or all run-control debugging a bus or similar
can be favorable for low debug module counts. When the modules also communicate with each other a crossbar
may be used for high throughput, but with the disadvantage of large area overhead.

Finally, we believe once some first tests with larger systems in the real world have been performed, hierarchical
topologies may become favorable. Beside optimizing the resource utilization, aggregating modules may bridge
subsets of trace modules to the actual debug interconnect to perform size optimizations on the aggregated packet
stream.

Debug Interconnect Interface (DII)

The Debug Interconnect Interface (DII) is the synchronous interface between the Debug Interconnect (DI) and the
debug modules. It is used to transfer Debug Packets.

The DII is a FIFO-like interface with data and handshake signals. All debug components must conform to the DII
when accessing the Debug Interconnect.

2.6. Component Architecture 19

Open SoC Debug Documentation Library, Release 0.1

Table 2.17: Debug Interconnect Interface description (master view)
signal
name

driver width
(bit)

description

data mas-
ter

16 a word of data of the debug packet

last mas-
ter

1 Set to 0b1 by the master to indicate that data is the last word in a Debug
Packet. Set to 0b0 otherwise.

valid mas-
ter

1 set to 0b1 by the master to indicate that data is valid and should be trans-
ferred

ready slave 1 set to 0b1 by the slave to acknowledge the transfer

The following rules and restrictions apply:

• The valid signal must not depend on the ready signal. This means you cannot have a combinational
dependency of the valid signal on the ready signal in one cycle.

• A transfer was succesfull iff valid and ready were set.

• The last signal indicates that data is the last word in a Debug Packet.

2.6.2 Debug Modules

Most functionality in Open SoC Debug is implemented as debug module. A debug module is connected to the
Debug Interconnect on the one side, and usually to a component in the functional system on the other side (such
as a CPU or a memory). The task of a debug module to collect data from or to interact with the functional system.

Debug modules MUST provide one Debug Interconnect Interface, and MUST implement the required parts of the
Programmer API, especially the Debug Module Base Register Map.

2.7 System Architecture

2.7.1 Implementation Aspects

Overflow Handling

Todo: make this a bit less vague and about the future, but about what we have now.

In case the trace events are generated at a faster rate than the host interface can transfer. This problem becomes
crucial with the increasing number of trace modules. Generally, this can be done on the level of the debug system
by a sophisticated flow control that will be specified in later revisions. An overflow occurs if a trace event is gener-
ated, but cannot be transferred or buffered due to backpressure from the interconnect, but backpressure cannot be
generated to the system module. In the current specification the trace infrastructure detects this situation, counts
how many packets could not be transfered and then transfers a missed_events event once it the interface is
available again.

Clock and Power Domains

Todo: copy clock and power domain aspects from architecture doc

20 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

2.7.2 Physical Interfaces

Note: This version of the Open SoC Debug specification does not describe any physical interface.

Todo: leave this out of the spec!? or put it next to HIM?

The physical interface is abstracted in Open SoC Debug as a FIFOs which transmit data between the host and the
device.

Glip Backend
Implementation

reset

e.g., JTAG, UART,
USB, PCIE, TCP

Software Hardware

glip_read()

glip_write()

glip_logic_reset()

Open
SoC
Debug

Fig. 2.3: GLIP as abstraction layer from the physical interface

While not required by OSD, we recommend building on top of GLIP5 as depicted in @fig:glip_overview. GLIP
provides a generic FIFO interface that reliably transfers data between the host and the system. Multiple alternatives
for simulations and prototyping hardware exist. In a silicon device, a high-speed serial interface is most probably
favorable.

2.8 Core Debug Modules

Open SoC Debug specifies a set of modules with commonly used functionality.

2.8.1 Host Interface Module (HIM)

Host
Interface
Module

host
interface

Debug
Interconnect

Fig. 2.4: Host Interface Module

The Host Interface Module (HIM) converts the debug packets to a length-value encoded data stream, that is
transferred using the glip interconnect. This format is simple and contains the length of the debug packet in one
data item followed by the debug packet.

Alternatively, the HIM can be configured to store the debug packets to the system memory using the memory
interface.

Debug Transport Datagram (DTD)

5 http://www.glip.io

2.8. Core Debug Modules 21

http://www.glip.io

Open SoC Debug Documentation Library, Release 0.1

Todo: Do we really want to specify this format in here, or should we leave it as implementation-defined until we
find a better solution which can cope with variable-length data in a streaming fashion (i.e. without buffering the
whole packet first to determine its length)?

The Debug Transport Datagram (DTD) encapsulates the Debug Packet into a 16-bit wide packet. The Debug
Packet data is prepended with the size of the packet in 16 bit words.

Table 2.18: Debug Interconnect Packet (DI Packet) Structure
word index data
0 size n of the Debug Packet in 16 bit words
1 word 0 of the Debug Packet
2 word 1 of the Debug Packet
.
n + 1 word n of the Debug Packet

Note: Due to the native width the Debug Transport Datagram is used when transferring a Debug Packet off-chip.

2.8.2 Subnet Control Module (SCM)

System
Control
Module

Debug
Interconnect

cpu_rst
sys_rst

Fig. 2.5: Subnet Control Module

The Subnet Control Module (SCM) is always mapped to the local address 0 in a subnet of the DI. The SCM
provides an description of the subnet (such as its vendor or the number of debug modules available in the subnet).
In addition, the SCM can be used to control the whole subnet, like resetting and starting or stopping its CPUs.

Programmer Interface: Control Registers

The Subnet Control Module implements the Debug Module Base Register Map. The reset values are listed below.

Table 2.19: SCM base register reset values
address name description reset value
0x0000 MOD_VENDOR module vendor 0x0001
0x0001 MOD_TYPE module type identifier 0x0001
0x0002 MOD_VERSION module version 0x0000
0x0003 MOD_CS module control and status 0x0000
0x0004 MOD_EVENT_DEST destination of debug events impl.-specific

Additionally, it implements the following control registers for module-specific functionality.

22 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Table 2.20: SCM Register Map
address name description
0x0200 SYSTEM_VENDOR_ID Vendor ID
0x0201 SYSTEM_DEVICE_ID Device ID
0x0202 NUM_MOD Debug module count
0x0203 MAX_PKT_LEN Maximum packet length
0x0204 SYSRST System Reset

System ID (SYSTEM_VENDOR_ID)

• Address: 0x0200

• Reset Value: implementation specific

• Access: read-only

The vendor ID identifies the entity creating/producing the device (e.g. the chip) that contains the OSD implemen-
tation. Vendor IDs are assigned by the Open SoC Debug Project. Unassigned vendor IDs may not be used.

Note: A list of assigned vendor IDs is available online at Vendor Identifier Registry.

Device ID (SYSTEM_DEVICE_ID)

• Address: 0x0201

• Reset Value: implementation specific

• Access: read-only

Number identifying the device (e.g. the chip) that contains the OSD implementation. The device ID must be
uniquely describe the device design as it is visible through the debug system.

Device IDs are assigned by the device vendor, identified by SYSTEM_VENDOR_ID.

Debug module count (NUM_MOD)

• Address: 0x0202

• Reset Value: implementation specific

• Access: read-only

The number of debug modules, including the SCM module itself (which is always assigned address 0 in the
subnet). Since all module addresses must be continguous, this value also describes the highest module address
available in the debug system as NUM_MOD - 1.

Maximum packet length (MAX_PKT_LEN)

• Address: 0x0203

• Reset Value: implementation specific

• Access: read-only

Maximum length of debug packets in 16 bit words, including all headers. MAX_PKT_LEN must be at least 12 to
enable the transmission of all register access packets within one packet.

2.8. Core Debug Modules 23

Open SoC Debug Documentation Library, Release 0.1

System reset (SYSRST)

• Address: 0x0204

• Reset Value: implementation specific

• Access: read-only

Reset the (parts) of the system.

Table 2.21: Field Reference: CONF
Bit(s) Field Access Reset

Value
Description

15:2 RES r/w 0x0 Reserved
1 CPU_RST impl.-

spec.
w CPU Reset

Reset all units executing code (e.g. CPUs)
in the system.
0b0: Deactivate the CPU reset The

CPU reset signal is set to the
deactivated state.

0b1: Activate the CPU reset The CPU
reset signal is set to the activated
state, resetting all CPUs. The reset
signal must be explicitly deactivated
again with another register write.

0 SYS_RST impl.-
spec.

w System Reset
Put the device, excluding the debug sys-
tem.
0b0: Deactivate the system reset The

system reset signal is set to the
deactivated state.

0b1: Activate the system reset The sys-
tem reset signal is set to the acti-
vated state, resetting the device. The
reset signal must be explicitly de-
activated again with another register
write.

2.8.3 Host Authentication Module (HAM)

Host
Authentication

Module

Debug
Interconnect

Fig. 2.6: Host Authentication Module

Todo: This module is not really specified yet.

The system can require the host to authenticate before connecting to the debug system, because the debug can
expose confidential information. A HAM implementation can for example require a token to match or a sophisti-
cated challenge-response protocol. If configured the HIM will wait for the HAM to allow the host to communicate
with modules other than the HAM.

24 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

2.8.4 Memory Access Module (MAM)

Memory
Access
Module

Debug
Interconnect

Memory
Interface

Fig. 2.7: Memory Access Module

The Memory Access Module (MAM) gives read and write access to a memory in the system. Typical use cases
include the initialization of a memory with a program, or the inspection of memory post-mortem or during run-
control debugging.

The module is either connected to the system memory, other memory blocks, or the last level cache.

System Interface

There is a generic interface between the MAM and the system:

Signal Direction Description
req_valid MAM->System Start a new memory access request
req_ready MAM->System Acknowledge the new memory access request
req_we MAM->System Write enable. 0: Read, 1: Write
req_addr MAM->System Request base address
req_burst MAM->System 0 for single beat access, 1 for incremental burst
req_size MAM->System Burst size in number of words
write_valid MAM->System Next write data is valid
write_data MAM->System Write data
write_strb MAM->System Byte strobe if req_burst==0
write_ready System->MAM Acknowledge this data item
read_valid System->MAM Next read data is valid
read_data System->MAM Read data
read_ready MAM->System Acknowledge this data item

Programmer Interface: Control Registers

The Memory Access Module implements the Debug Module Base Register Map. The reset values are listed below.

Table 2.22: MAM base register reset values
address name description reset value
0x0000 MOD_VENDOR module vendor 0x0001
0x0001 MOD_TYPE module type identifier 0x0003
0x0002 MOD_VERSION module version 0x0000
0x0003 MOD_CS module control and status 0x0001
0x0004 MOD_EVENT_DEST destination of debug events 0x0000 (unused,

read-only)

Additionally, it implements the following control registers for MAM-specific functionality.

2.8. Core Debug Modules 25

Open SoC Debug Documentation Library, Release 0.1

Table 2.23: MAM register map
address name description
0x0200 AW address width of the attached memory in bits. Valid values are

16, 32 and 64.
0x0201 DW data width of the attached memory in bits. Valid values are 16,

32 and 64.
0x0202 REGIONS number of memory regions
0x0280 REGION0_BASEADDR_0Bits [15:0] (least significant bits) of the base address of region 0
0x0281 REGION0_BASEADDR_1Bits [31:16] of the base address of region 0
0x0282 REGION0_BASEADDR_2Bits [47:32] of the base address of region 0
0x0283 REGION0_BASEADDR_3Bits [63:48] (most significant bits) of the base address of region 0
0x0284 REGION0_MEMSIZE_0Bits [15:0] (least significant bits) of the memory size of region 0
0x0285 REGION0_MEMSIZE_1Bits [31:16] of the memory size of region 0
0x0286 REGION0_MEMSIZE_2Bits [47:32] of the memory size of region 0
0x0287 REGION0_MEMSIZE_3Bits [63:48] (most significant bits) of the memory size of region

0
0x0290 REGION1_BASEADDR_0Bits [15:0] (least significant bits) of the base address of region 1
0x0291 REGION1_BASEADDR_1Bits [31:16] of the base address of region 1
0x0292 REGION1_BASEADDR_2Bits [47:32] of the base address of region 1
0x0293 REGION1_BASEADDR_3Bits [63:48] (most significant bits) of the base address of region 1
0x0294 REGION1_MEMSIZE_0Bits [15:0] (least significant bits) of the memory size of region 1
0x0295 REGION1_MEMSIZE_1Bits [31:16] of the memory size of region 1
0x0296 REGION1_MEMSIZE_2Bits [47:32] of the memory size of region 1
0x0297 REGION1_MEMSIZE_3Bits [63:48] (most significant bits) of the memory size of region

1
0x02A0 REGION2_BASEADDR_0Bits [15:0] (least significant bits) of the base address of region 2
0x02A1 REGION2_BASEADDR_1Bits [31:16] of the base address of region 2
0x02A2 REGION2_BASEADDR_2Bits [47:32] of the base address of region 2
0x02A3 REGION2_BASEADDR_3Bits [63:48] (most significant bits) of the base address of region 2
0x02A4 REGION2_MEMSIZE_0Bits [15:0] (least significant bits) of the memory size of region 2
0x02A5 REGION2_MEMSIZE_1Bits [31:16] of the memory size of region 2
0x02A6 REGION2_MEMSIZE_2Bits [47:32] of the memory size of region 2
0x02A7 REGION2_MEMSIZE_3Bits [63:48] (most significant bits) of the memory size of region

2
0x02B0 REGION3_BASEADDR_0Bits [15:0] (least significant bits) of the base address of region 3
0x02B1 REGION3_BASEADDR_1Bits [31:16] of the base address of region 3
0x02B2 REGION3_BASEADDR_2Bits [47:32] of the base address of region 3
0x02B3 REGION3_BASEADDR_3Bits [63:48] (most significant bits) of the base address of region 3
0x02B4 REGION3_MEMSIZE_0Bits [15:0] (least significant bits) of the memory size of region 3
0x02B5 REGION3_MEMSIZE_1Bits [31:16] of the memory size of region 3
0x02B6 REGION3_MEMSIZE_2Bits [47:32] of the memory size of region 3
0x02B7 REGION3_MEMSIZE_3Bits [63:48] (most significant bits) of the memory size of region

3
0x02C0 REGION4_BASEADDR_0Bits [15:0] (least significant bits) of the base address of region 4
0x02C1 REGION4_BASEADDR_1Bits [31:16] of the base address of region 4
0x02C2 REGION4_BASEADDR_2Bits [47:32] of the base address of region 4
0x02C3 REGION4_BASEADDR_3Bits [63:48] (most significant bits) of the base address of region 4
0x02C4 REGION4_MEMSIZE_0Bits [15:0] (least significant bits) of the memory size of region 4
0x02C5 REGION4_MEMSIZE_1Bits [31:16] of the memory size of region 4
0x02C6 REGION4_MEMSIZE_2Bits [47:32] of the memory size of region 4
0x02C7 REGION4_MEMSIZE_3Bits [63:48] (most significant bits) of the memory size of region

4
0x02D0 REGION5_BASEADDR_0Bits [15:0] (least significant bits) of the base address of region 5
0x02D1 REGION5_BASEADDR_1Bits [31:16] of the base address of region 5
0x02D2 REGION5_BASEADDR_2Bits [47:32] of the base address of region 5

Continued on next page

26 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Table 2.23 – continued from previous page
address name description
0x02D3 REGION5_BASEADDR_3Bits [63:48] (most significant bits) of the base address of region 5
0x02D4 REGION5_MEMSIZE_0Bits [15:0] (least significant bits) of the memory size of region 5
0x02D5 REGION5_MEMSIZE_1Bits [31:16] of the memory size of region 5
0x02D6 REGION5_MEMSIZE_2Bits [47:32] of the memory size of region 5
0x02D7 REGION5_MEMSIZE_3Bits [63:48] (most significant bits) of the memory size of region

5
0x02E0 REGION6_BASEADDR_0Bits [15:0] (least significant bits) of the base address of region 6
0x02E1 REGION6_BASEADDR_1Bits [31:16] of the base address of region 6
0x02E2 REGION6_BASEADDR_2Bits [47:32] of the base address of region 6
0x02E3 REGION6_BASEADDR_3Bits [63:48] (most significant bits) of the base address of region 6
0x02E4 REGION6_MEMSIZE_0Bits [15:0] (least significant bits) of the memory size of region 6
0x02E5 REGION6_MEMSIZE_1Bits [31:16] of the memory size of region 6
0x02E6 REGION6_MEMSIZE_2Bits [47:32] of the memory size of region 6
0x02E7 REGION6_MEMSIZE_3Bits [63:48] (most significant bits) of the memory size of region

6
0x02F0 REGION7_BASEADDR_0Bits [15:0] (least significant bits) of the base address of region 7
0x02F1 REGION7_BASEADDR_1Bits [31:16] of the base address of region 7
0x02F2 REGION7_BASEADDR_2Bits [47:32] of the base address of region 7
0x02F3 REGION7_BASEADDR_3Bits [63:48] (most significant bits) of the base address of region 7
0x02F4 REGION7_MEMSIZE_0Bits [15:0] (least significant bits) of the memory size of region 7
0x02F5 REGION7_MEMSIZE_1Bits [31:16] of the memory size of region 7
0x02F6 REGION7_MEMSIZE_2Bits [47:32] of the memory size of region 7
0x02F7 REGION7_MEMSIZE_3Bits [63:48] (most significant bits) of the memory size of region

7

Address Width (AW)

• Address: 0x0200

• Reset Value: implementation specific

• Access: read-only

The Address Width (AW) register contains the width of a memory address in bits. Address Width is guaranteed to
be a multiple of 16.

Data Width (DW)

• Address: 0x0201

• Reset Value: implementation specific

• Access: read-only

The Data Width (DW) register contains the width of a data word in bits. Data Width is guaranteed to be a multiple
of 16.

Number of Memory Regions (REGIONS)

• Address: 0x0202

• Reset Value: implementation specific

• Access: read-only

The Regions (REGIONS) register holds the number of memory regions available, as set during design time. At
least 1 region is available.

2.8. Core Debug Modules 27

Open SoC Debug Documentation Library, Release 0.1

Region Memory Base Address (REGION*_BASEADDR_*)

• Address: see full register map above

• Reset Value: implementation specific

• Access: read-only

The base address of a region 0-7 is given in the REGION*_BASEADDR_* registers. The base address is a 64 bit
number stored in big endian format in four configuration registers.

For example, the base address of region 0 can be determined by the following operation:

region0_baseaddr = REGION0_BASEADDR_3 << 48 | REGION0_BASEADDR_2 << 32 | REGION0_
→˓BASEADDR_1 << 16 | REGION0_BASEADDR_0

Note: For any given region, the corresponding base address register is only present if the region actually exists.
You must read the REGIONS register first to determine how many regions are available.

Region Memory Size (REGION*_MEMSIZE_*)

• Address: see full register map above

• Reset Value: implementation specific

• Access: read-only

The memory size of a region 0-7 is given in the REGION*_MEMSIZE_* registers. The memory size is a 64 bit
number stored in big endian format in four configuration registers.

For example, the memory size of region 0 can be determined by the following operation:

region0_memsize = REGION0_MEMSIZE_3 << 48 | REGION0_MEMSIZE_2 << 32 | REGION0_
→˓MEMSIZE_1 << 16 | REGION0_MEMSIZE_0

Note: For any given region, the corresponding memory size register is only present if the region actually exists.
You must read the REGIONS register first to determine how many regions are available.

Programmer Interface: Data

Reading and writing of the memory happens through a MAM-specific protocol inside DI packets of type EVENT.
Data transfers can either be a read or a write access. Both burst and single word accesses are supported.

Figure 2.8 shows how data, which should be written to or read from a memory address is encapsulated.

In a first step, a MAM Transfer Request is formed, which consists of a header, the address to write to/read from,
and (for write accesses) the data itself. In a second step, the MAM Transfer Request is split into parts each not
exceeding the maximum payload size of the Debug Interconnect. Out of each of the resulting chunks a DI Packet
of type EVENT is created.

In case of read accesses or acknowledged (synchronous) write accesses, a response is sent from the MAM to the
source of the MAM Transfer Request.

In the following, we first explaing the structure of the different types of MAM transfers, and then its packetization
into DI Packets.

28 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Data DATA

HDR
ADDR

MAM
Transfer

Memory
Address PAYLOAD

DEST
SRC

FLAGS

DI Packets

PAYLOAD

DEST
SRC

FLAGS
DEST
SRC

FLAGS

split transfer at
max. payload length

Input

Fig. 2.8: MAM data transfer encapsulation

MAM Transfer Request

A MAM Transfer Request is used to read or write s bytes of data, starting at the byte address addr.

Note: The address addr must be word-aligned according to the data width DW. To access non-aligned data the
byte-select field SELSIZE can be used.

A transfer request is structured as a sequence of bytes, consisting of a header, the memory byte address, and (in
case of a write request) the write data. The structure of a MAM Transfer Request is given below.

The following variables are used:

• AW and DW are the address and data width, respectively, of the memory. The values for these variables can
be read from the MAM control registers. The protocol supports address and data width values of 16, 32 and
64 bit.

• s is the number of bytes to transfer.

• a is the size of a memory address in bytes, calculated as a = AW / 8.

Table 2.24: Structure of a MAM Transfer Request
byte name description
MAM Transfer Request Header
0 HDR0 MAM Transfer Request Header (part 1)
1 HDR1 MAM Transfer Request Header (part 2)
Address
2 ADDR(0) most significant byte of the read/write address, i.e.

addr[AW-1 : AW-8]
.
1 + a ADDR(a-1) least significant byte of the read/write address, i.e.

addr[7 : 0]
Write Data
1 + a + 1 D(0) the first data byte to be transferred, to be written to

address addr.
1 + a + 2 D(1) the second data byte to be transferred, to be written to

address (addr + 1).
.
1 + a + s D(s-1) the last data byte to be transferred, to be written to

address (addr + s - 1).

2.8. Core Debug Modules 29

Open SoC Debug Documentation Library, Release 0.1

MAM Transfer Request Header, Part 1 (HDR0)

Table 2.25: Field Reference: HDR0
Bit(s) Field Description
7 WE Write Enable

0: Read read from memory
1: Write write to memory

6 BURST Burst or Single Word Access Mode
This flag switches between burst and single word access.
0: Single Word Access Use single word access.
1: Burst Access Read or write from a continuous region of memory.

5 SYNC Use Synchronous Writes
0: Asynchronous Writes Asynchronous writes are not acknowledged by

the MAM, thus other modules cannot know when a write has finished
and the data has reached the attached memory. However, subsequent
reads from the same MAM will return the newly written data.

1: Synchronous Writes Synchronous writes are acknowledged by the
MAM. The acknowledgement is an empty read response.

4:0 RESERVED Reserved for future extensions

MAM Transfer Request Header, Part 2 (HDR1)

Table 2.26: Field Reference: HDR1
Bit(s) Field Description
7:0 SELSIZE Burst Size/Byte Select

This field has a different meaning depending on the value of the HDR0.
BURST field.
If HDR0.BURST = 1: Burst Size The number of words the transfer con-

sists of, i.e. (s / DW).
If HDR0.BURST = 0: Byte Select Only relevant for writes (HDR0.WE =

1): byte select. SELSIZE contains a bit mask, a data byte is only
written if a corresponding bit in the mask is set to 1. For example, set
SELSIZE[0] := 1 to write D0.

MAM Transfer Response

Table 2.27: Structure of a MAM Transfer Response
byte name description
Read Data
1 + a + 1 D(0) the first data byte read from the memory at address

addr.
1 + a + 2 D(1) the second data byte read from the memory at address

(addr + 1).
.
1 + a + s D(s-1) the last data byte read from the memory at address

(addr + s - 1).

30 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Packetization

A MAM Transfer (both request and response) is packetized into DI event packets for transmission over the debug
interconnect. Towards this goal, a MAM Transfer is split into chunks of each (MAX_PAYLOAD_LEN * 2) bytes.
Each such chunk is sent as PAYLOAD in a DI packet.

The maximum number of payload words in a Debug Packet (MAX_PAYLOAD_LEN) can be determined by reading
the MAX_PKT_LEN register of the SCM module and subtracting 3 to account for the header words.

The following fields in the header of the DI packet are set:

• FLAGS.TYPE is set to EVENT

• FLAGS.TYPE_SUB is set to 0

Table 2.28: MAM Packet Structure
payload word description
0 [15 : 8] := D(0), [7 : 0] := D(1)
1 [15 : 8] := D(2), [7 : 0] := D(3)
.
MAX_PAYLOAD_LEN - 1 . . .

All packets except the last one should be of size MAX_PKT_LEN to reduce overhead.

2.8.5 Software Trace Module (STM)

The Software Trace Module (STM) emits trace events that are emitted by the software execution. Such an STM
event is a tuple (id,value). There are generally two classed: user-defined and system-generated trace events.

User-defined trace events are added by the user by instrumenting the source code with calls to an API like
TRACE(short id, uint64_t value). A debug tool can map the trace events to a visualization.

Different user threads can emit trace events interleaved. Beside this the operating system can emit relevant trace
information too. For both reasons, there are system-generated events.

There are two ways to emit a software trace event. First there is a set of special purpose registers or similar
techniques used to emit trace events. Most importantly, each trace event must be emitted atomically. Secondly,
the processor core can have hardware to emit software trace events. For example a mode change can be emitted
without much overhead.

The generic trace interface is enable, id and value at the core level and the STM handles the filtering,
aggregation and packetization as described above.

System Interface: Software Trace Port

The software trace port is a simple data port with an enable signal. There is no backpressure as the debug
infrastructure is not supposed to influence the processor execution.

The interface is defined as:

Name Width Description
id 16 Trace identifier
value VALWIDTH Trace value, width of CPU general purpose registers
enable 1 Trace an event this cycle

Trace generation

The method of emitting a trace event depends on the micro-architecture. Examples for existing processor core
architectures are given in the following.

2.8. Core Debug Modules 31

Open SoC Debug Documentation Library, Release 0.1

Software Trace Port: OpenRISC

In OpenRISC an interesting property of the instruction set is used: The no-operation l.nop has a parameter K
of 16 bit width. The specification defines this parameter to be used for simulation purposes, and it is here used to
emit the trace value.

We use this operation for the trace identifier. As the compiler emits l.nop 0x0, the user-defined value of
0x0000 is not available in this specification.

The trace value is defined to be written to the general purpose register r3 with the properties described before.
As a general purpose register is restored after interrupts, the atomicity property holds. Finally, the register r3 is
the first function parameter register in the ABI which eases efficient implementation of library functions for trace
events.

In the hardware implementation the writeback stage must be observed and whenever a write to register r3 is
observed, the same value is stored into the register value. When completion of an l.nop operation is observed,
the operand K (if not equal to 0) and the value are emitted on the trace port for one cycle.

Finally, the following extension is required to support the trace event THREAD_SWITCH: All writes to register
r10 must be tracked and if a value is written, the trace event is emitted. The register is historically reserved and
in the Linux port used as thread-local storage (TLS), which is unique for concurrently executed threads.

Software Trace Port: RISC-V

In RISC-V an additional control register is added to emit a trace event (non-standard for the moment). A write to
this register triggers the emission of the trace event for one cycle.

Beside this, the general purpose register x10 (a0) is tracked for updates as the trace event value, identical to the
reasoning for OpenRISC.

Finally the register x4 (tp) may also be tracked and a THREAD_SWICH trace event is emitted on updates to the
register.

Software Trace Port: Other cores

The method described for the RISC-V microarchitecture should be applicable to a variety of RISC cores.

Software Trace Port: Out-of-Order

With out-of-order cores it is important to track the accesses to the two data items properly, which can be enforced
by a memory fence.

In an out-of-order implementation the software trace port may be implemented more efficiently at stages where
the trace event may still be canceled. If that is the case, the software trace port should hold back the value until it
can be safely emitted or aborted beforehand.

Programmer Interface: Control Registers

The System Trace Module implements the Debug Module Base Register Map. The reset values are listed below.

Table 2.29: STM base register reset values
address name description reset value
0x0000 MOD_VENDOR module vendor 0x0001
0x0001 MOD_TYPE module type identifier 0x0004
0x0002 MOD_VERSION module version 0x0000
0x0003 MOD_CS module control and status 0x0000
0x0004 MOD_EVENT_DEST destination of debug events 0x0000

32 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Additionally, it implements the following control registers for module-specific functionality.

Table 2.30: STM register map
address name description
0x0200 VALWIDTH width of the value data items emitted by this module, in bit.

Typically identical with the register width of the processor the
STM module is connected to. Valid values are 16, 32 and 64.

Programmer Interface: Data

The STM module generates two types of event packets: trace packets and overflow packets. Trace packets contain
the trace data in the form of (id,value) tuples. Overflow packets indicate that trace events were missed, usually if
more events are generated than the module can send out to the DI.

Trace Packets

A Trace Packet encapsulates a trace event, which consists of an identifier id (always 16 bit wide) and an associated
value value (VALWIDTH bit wide).

The following fields in the header of the DI packet are set:

• FLAGS.TYPE is set to EVENT

• FLAGS.TYPE_SUB is set to 0

Table 2.31: STM Trace Packet Structure
payload word description
0 timestamp[15:0]
1 timestamp[31:16]
2 id
3 value[15:0]
.
2 + VALWIDTH / 16 value[VALWIDTH-1:VALWIDTH-16]

Overflow Packets

The following fields in the header of the DI packet are set:

• FLAGS.TYPE is set to EVENT

• FLAGS.TYPE_SUB is set to 0x5

Table 2.32: STM Overflow Packet Structure
payload word description
0 number of missed events

Trace Events

Trace events are a tuple (id, value). The identifier (id) can be used to identify the type of event. To achieve
interoperability between implementations, some identifiers are specified, while others can be used for vendor
extensions.

Generally, the trace identifiers are divided into these groups:

2.8. Core Debug Modules 33

Open SoC Debug Documentation Library, Release 0.1

Identifiers Group Description
0x0000 N/A Not used
0x0001 - 0x3fff USER User-defined trace events
0x4000 - 0x7fff COM Commonly defined trace events
0x8000 - 0xbfff N/A Reserved
0xc000 - 0xffff SYS System-generated trace events

The implementation of all trace events is optional, both for software and for hardware.

User-defined trace events (USER)

Trace events from this group are generated from software execution. There are many possibilities to implement
them in hardware, but from the ABI there are generally two data items that a software writes to emit a trace event:
first it writes the value and then it writes the id.

As those are two memory accesses in two distinct operations the following properties must hold:

• Sequential consistency: The write to the second data item must occur after the first data item. This property
is usually enforced with memory fences.

• Atomicity: The first data item must not be changed in multithreaded systems or by interrupt processing in
general.

For more details see the section Trace Generation in the following.

Commonly defined trace events (COM)

Those are trace events identical to the user-defined trace events, but that have a commonly defined semantic mean-
ing. Their semantic meaning is therefore still transparent to the hardware module, but common to all platforms.
This eases implementation of trace debugger tools.

Identifier Name Description
0x4000 THREAD_NAME Emit a thread name, emitted repeatedly

System-generated trace events (SYS)

This group of trace events are generated by the hardware or by the operating/runtime system. For the latter the
same method as user-defined trace events is used. For hardware-generated events the method of emitting the trace
event is core-specific and examples are described in the the section Trace Generation.

Identifier Name Description
0x8000 THREAD_SWITCH Unique value of the scheduled thread

2.8.6 Core Debug Module (CDM)

The Core Debug Module (CDM) provides access to the run-control debug functionality of a single CPU core. The
CDM targets CPU cores which provide a memory-mapped interface to their registers which control the debugging
procedure. In its current form the CDM targets the 32 bit or1k CPU core and other cores with a similar interface.

Through the CDM a debugging tool, e.g. GDB, can access the Special Purpose Registers (SPRs) of the CPU core
to control the debugging process. Additionally the debugging tool uses the Memory Access Module (MAM) to
read and write data from/to the memory. Debugging-related events (e.g. “core has stalled”) are signalled through
a OSD event packet.

34 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Fig. 2.9: High Level Overview of the Core Debug Module (CDM)

System Interface

The following signals are required from the CPU core in order to interface to the CDM module:

Signal Width Direction Description
du_stall_i 1 CDM->CPU Logic ‘1’ causes CPU to stall
du_stall_o 1 CPU->CDM Indicates CPU has reached breakpoint condition
du_stb_i 1 CDM->CPU Access to the core debug interface
du_ack_o 1 CPU->CDM Complete access to the core
du_adr_i 16 CDM->CPU Address of CPU register to be read or written
du_we_i 1 CDM->CPU Write cycle when true, read cycle when false
du_dat_i 32 CDM->CPU Write data
du_dat_o 32 CPU->CDM Read data

Reference: https://opencores.org/usercontent/doc/1242694069 (Section 2.2.1)

Programmer Interface: Control Registers

The Control Debug Module implements the Debug Module Base Register Map.

Table 2.33: CDM base register reset values
address name description reset value
0x0000 MOD_VENDOR module vendor 0x0001
0x0001 MOD_TYPE module type identifier 0x0006
0x0002 MOD_VERSION module version 0x0000
0x0003 MOD_CS module control and status 0x0000
0x0004 MOD_EVENT_DEST destination of debug events 0x0000

Additionally, the CDM implements the following registers.

2.8. Core Debug Modules 35

https://opencores.org/usercontent/doc/1242694069

Open SoC Debug Documentation Library, Release 0.1

Table 2.34: CDM register map
address name width (bit) description
0x0200 CORE_CTRL 16 Control the CPU core
0x0201 CORE_REG_UPPER 16 Most significant bits of the SPR address

(see below)
0x0202 CORE_DATA_WIDTH16 Register data width of the attached CPU

core in bits
0x8000-0xFFFF 32 Access to the SPRs of the CPU core (see

below)

Core Control Register (CORE_CTRL)

• Address: 0x0200

• Reset Value: 0

• Data Width: 16 bit

• Access: read-write

Table 2.35: Field Reference: CORE_CTRL
Bit(s) Field Access Reset

Value
Description

15:1 RES r/w 0x0 Reserved
0 STALL r/w impl.-

spec.
Core Stall
Stall the attached CPU core.
0b1: Stall the core The core is stalled.
0b0: Unstall the core The core is un-

stalled.

Core Upper Register (CORE_REG_UPPER)

• Address: 0x0201

• Reset Value: 0

• Data Width: 16 bit

• Access: read-write

The most significant bit of the SPR register address. See the section “Access to core registers” for more details.

Core Data Width (CORE_DATA_WIDTH)

• Address: 0x0202

• Reset Value: 0

• Data Width: 16 bit

• Access: read-write

The register width of the CPU core (in bits) the CDM module is connected to. Valid values are 16, 32 and 64 and
128.

36 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Access to core registers

• Address: 0x8000-0xFFFF

• Reset Value: implementation specific

• Data Width: 32 bit

• Access: read-write

Accesses to CDM registers between 0x8000 and 0xFFFF are forwarded to the SPRs of the attached CPU core.
The register address of the accessed SPR can be determined with the help of the CORE_REG_UPPER value using
the following rule:

spr_reg_addr = CORE_REG_UPPER << 15 | cdm_reg_addr - 0x8000

Consult the specification of the attached CPU core for a further description of the register accessed, and possible
access limitations (e.g. read-only registers).

Programmer Interface: Data

The CDM module generates only one type of event packets: CPU debug stall packets. These packets contain the
data in the form of stall payload word.

CPU Debug Stall packet

A CPU Debug Stall Packet encapsulates a breakpoint or watchpoint event. Whenever the program counter in the
CPU core matches with the watchpoint/breakpoint address, CPU core stalls and this event packet is generated. It
notifies the debugger, i.e. GDB that CPU has reached a breakpoint or watchpoint condition and the CPU core is
stalled.

The following fields in the header of the DI packet are set:

• FLAGS.TYPE is set to EVENT

• FLAGS.TYPE_SUB is set to 0

Table 2.36: CPU Debug Stall Packet Structure
payload word description
0 stall

Bit ‘0’: Logic 1 indicates the debugger that the CPU core is stalled.

2.8.7 Core Trace Module (CTM)

The Core Trace Module (CTM) captures trace events generated from the processor core, and sends them in com-
pressed form as event packets.

Which events are available depends on the observed processor core. Typically the following events are traced:

• executed instructions (instruction trace)

• branch predictor status

• memory access delays

• cache miss rates

2.8. Core Debug Modules 37

Open SoC Debug Documentation Library, Release 0.1

Note: The CTM module is in a very early preview state and has significant limitations. It currently focuses
on function call traces and has been tested only on RISC-V and or1k (OpenRISC) ISAs. No trace compression
mechanisms are employed.

Programmer Interface: Control Registers

The Core Trace Module implements the Debug Module Base Register Map. The reset values are listed below.

Table 2.37: CTM base register reset values
address name description reset value
0x0000 MOD_VENDOR module vendor 0x0001
0x0001 MOD_TYPE module type identifier 0x0005
0x0002 MOD_VERSION module version 0x0000
0x0003 MOD_CS module control and status 0x0000
0x0004 MOD_EVENT_DEST destination of debug events 0x0000

Additionally, it implements the following control registers for module-specific functionality.

Table 2.38: CTM register map
address name description
0x0200 ADDR_WIDTH width of memory addresses in bit. Valid values are 16, 32 and 64.
0x0201 DATA_WIDTH width of a data word in bit. Valid values are 16, 32 and 64.

Programmer Interface: Data

The CTM module generates two types of event packets: trace packets and overflow packets. Trace packets contain
the data traced from the processor core. Overflow packets indicate that trace events were missed, usually if more
events are generated than the module can send out to the DI.

Trace Packets

A Trace Packet encapsulates a single trace event.

The following fields in the header of the DI packet are set:

• FLAGS.TYPE is set to EVENT

• FLAGS.TYPE_SUB is set to 0

38 Chapter 2. The Open SoC Debug Specification

Open SoC Debug Documentation Library, Release 0.1

Table 2.39: CTM Trace Packet Structure
payload word description
0 timestamp[15:0]
1 timestamp[31:16]
2 Next Program Counter npc[15:0]
.
1 + ADDR_WIDTH / 16 Next Program Counter npc[ADDR_WIDTH-1:ADDR_WIDTH-16]
1 + ADDR_WIDTH / 16 + 1 Program Counter pc[15:0]
.
1 + 2 * (ADDR_WIDTH / 16 + 1) Program Counter pc[ADDR_WIDTH-1:ADDR_WIDTH-16]
1 + 2 * (ADDR_WIDTH / 16 + 1) + 1 [1:0] mode: The privilege mode of the executed instruction.

[2] ret: The executed instruction returned from a subroutine
(e.g. Jump and Link Register (jalr) on RISC, ret on x86).
[3] call: The executed instruction called a subroutine (e.g.
Jump and Link (jal) on RISC, call on x86).
[4] modechange: The executed instruction changed the privi-
lege mode (e.g. from user to kernel space).
[15:5] reserved

Overflow Packets

The following fields in the header of the DI packet are set:

• FLAGS.TYPE is set to EVENT

• FLAGS.TYPE_SUB is set to 0x5

Table 2.40: CTM Overflow Packet Structure
payload word description
0 number of missed events

2.8.8 UART Device Emulation Module (DEM-UART)

W
IS

H
BO

N
E

BU
S

DEM_UART_16550 DEM_UART

D
EB

U
G

IN
TE

R
C

O
N

N
EC

T

DEM_UART Wrapper

Fig. 2.10: High-Level Overview of the Device Emulation Module for UART (DEM-UART)

The UART Device Emulation Module connects to the bus of a given CPU on one side, and to the Debug In-
terconnect on the other. Towards the CPU it behaves like a UART-16550A device, but instead of transmitting
information over a UART-Interface it instead passes it to a host PC via the Debug Interconnect.

2.8. Core Debug Modules 39

Open SoC Debug Documentation Library, Release 0.1

Programmer Interface: Control Registers

The Device Emulation modules implements the Base Register Map. (Debug Module Base Register Map) The reset
values are listed below.

Table 2.41: DEM-UART base register reset values
address name description reset value
0x0000 MOD_VENDOR module vendor 0x0001
0x0001 MOD_TYPE module type identifier 0x0002
0x0002 MOD_VERSION module version 0x0000
0x0003 MOD_CS module control and status 0x0000
0x0004 MOD_EVENT_DEST destination of debug events impl.-specific

There are no additional registers implemented in this module.

Programmer Interface: Data

The Device Emulation Module only generates one type of event packet: DEM-UART Data Packet

DEM-UART Data Packet

A DEM-UART Data packet contains one 8-bit character, that has been sent to a UART interface by a CPU, as the
only payload. All packets of this type are sent to the DI Address MOD_EVENT_DEST.

The following fields in the header of the DI packet are set:

• FLAGS.TYPE is set to EVENT

• FLAGS.TYPE_SUB is set to 0x00

The resulting Debug Interconnect packet has the following structure.

Table 2.42: Structure of a DEM-UART data packet
Word Field Description
1 CHARACTER Contains the character that is being sent, the MSB is

always 0x00

16550 UART Registers

The following UART registers are implemented and accessible via the bus, the address mapping is in accordance
with the UART-16550(A) standard as specified in this Datasheet6. No FIFOs are present in hardware. No Mo-
dem or DMA-Mode related features, registers or interrupts are implemented. Writing to a register that is not
implemented has no effect, reading from such a register will always return 0x00.

All registers are 8 bit wide.

6 http://caro.su/msx/ocm_de1/16550.pdf

40 Chapter 2. The Open SoC Debug Specification

http://caro.su/msx/ocm_de1/16550.pdf

Open SoC Debug Documentation Library, Release 0.1

Table 2.43: 16550 UART Registers
Address Register Access Type Reset

Value
Description

0x00 RBR Read only 0x00 Receiver Buffer Register
0x00 THR Write only 0x00 Transmitter Holding Register
0x01 IER Read/Write 0x00 Enable(1)/Disable(0) interrupts. See this7 for more

details on each interrupt.
0x02 IIR Read only 0x01 Information which interrupt occurred
0x02 FCR Write only 0x00 Control behavior of the internal FIFOs. Currently

writing to this Register has no effect.
0x03 LCR Read/Write 0x00 The only bit in this register that has any meaning is

LCR7 aka the DLAB, all other bits hold their written
value but have no meaning.

0x05 LSR Read only 0x60 Information about state of the UART. After the UART
is reset, 0x60 indicates when it is ready to transmit
data.

System Interface

The DEM-UART module provides a generic bus interface, which can be used by wrapper modules to support
actual bus interfaces. We specify a Wishbone wrapper interface below.

Signal Width (bit) Direction Description
bus_req 1 CPU->DEM 1 indicates an active request from the CPU
bus_addr 3 CPU->DEM Address to be used with write/read operation
bus_write 1 CPU->DEM 1 indicates a register write request
bus_wdata 8 CPU->DEM Data to be written into the register
bus_ack 1 DEM->CPU Acknowledge last request
bus_rdata 8 DEM->CPU Data that was read from the register

clk

bus_req

bus_write

bus_addr addr

bus_ack

bus_wdata data

Fig. 2.11: A typical write cycle

A new request is made by asserting bus_req, unless bus_req is asserted, no other signal is valid. bus_write
indicates whether it is a read (0) or a write (1) request. bus_addr may be any of the values documented under
16550 UART Registers. Finally bus_ack is asserted to confirm the request and end the cycle.

bus_req, bus_addr and bus_write are asserted in the same cycle, if it is a write cycle bus_wdata is
also set in the same cycle. bus_ack may be asserted any number of cycles after bus_req has been asserted.
bus_rdata is only valid when bus_ack is asserted and bus_write is negated.

7 http://caro.su/msx/ocm_de1/16550.pdf

2.8. Core Debug Modules 41

http://caro.su/msx/ocm_de1/16550.pdf

Open SoC Debug Documentation Library, Release 0.1

clk

bus_req

bus_write

bus_addr addr

bus_ack

bus_rdata data

Fig. 2.12: A typical read cycle

Wishbone Bus Interface

If a wishbone interface is present, it should wrap around the generic bus described above and take care of trans-
lating all the signals. The following signals MUST be present on a compatible WISHBONE bus.

Signal Width (bit) Direction Description
wb_adr_i 3 CPU->DEM Address to be used with write/read operation
wb_cyc_i 1 CPU->DEM 1 indicates valid bus cycle is in progress
wb_dat_i 32 CPU->DEM Data to be written into the register
wb_sel_i 4 CPU->DEM Bitfield indicating validity of data on dat_i
wb_stb_i 1 CPU->DEM 1 indicates that DEM is selected
wb_we_i 8 CPU->DEM 1 indicates a write request by the WB-Master
wb_ack_o 1 DEM->CPU 1 indicates termination of normal bus cycle
wb_dat_o 32 DEM->CPU Data that was read from the register

For more information see the Wishbone B3 specification8

2.9 Revision History

2.9.1 Preview 2 (to be released)

2nd preview of initial version for discussion.

• Revised document structure.

• Added more introduction and clarified design goals.

2.9.2 Preview 1 (released 2016-02-01)

1st preview of initial version for discussion.

A full revision history in all detail is available in our Git repository9.

8 https://cdn.opencores.org/downloads/wbspec_b3.pdf
9 https://github.com/opensocdebug/documentation

42 Chapter 2. The Open SoC Debug Specification

https://cdn.opencores.org/downloads/wbspec_b3.pdf
https://github.com/opensocdebug/documentation

CHAPTER 3

User Guides

You have a SoC design which contains an Open SoC Debug-enabled debug system? The OSD User Guides
describe how to make use of OSD, answering questions like

• How can I connect to an OSD-enabled SoC?

• How can I initialize the chip’s memories with my software program?

• How can I start and stop the software execution?

• How can I produce a trace of all functions?

Todo: This part of the documentation remains to be written.

43

Open SoC Debug Documentation Library, Release 0.1

44 Chapter 3. User Guides

CHAPTER 4

Implementer Documentation

Open SoC Debug comes with many hooks and options to implement your own ideas on top of it. This part of
the documentation targets developers working on integrating Open SoC Debug software or hardware into their
products, as well as people contributing to OSD itself.

4.1 Style Guides

4.1.1 SystemVerilog Coding Guidelines

We try to maintain SV compatibility for 4 tools: Verilator, VCS, ISim (the Vivado simulator) and Vivado Synthe-
sizer. To increase the code compatibility, please following the following guidance until tools are improved.

1. Avoid using arrayed interface any where. (port or inside a module)

Existing issues in: ISim, Vivado

2. Avoid using functions/tasks in interfaces.

Existing issues in: VCS

3. Avoid using simple names, such as “length”, “size”, “out”, “in”. They can be mistaken into functions.

Existing issues in: ISim

4. Avoid “assign” member elements of a struct, use always_comb instead.

Existing issues in: ISim

5. Avoid using interface as data buffer inside a module.

Existing issues in: Potentially all as interface is not supposed to be used in this way.

6. Avoid using interface to connect multiple hierarchical ports. Such as connect A.data -> B.data ->
C.data, where B is a sub-module of A and C is a sub-module of B.

Existing issues in: ISim (surprisingly it does not support this basic feature!)

7. Avoid using interface as top-level ports. Interfaces are flattened after synthesis, which causes port mismatch
between behavioural DUT and post-syn DUT. Arguably avoid using interface modport. Some tool cannot
correctly check the modport input/output definition anyway.

Existing issues in: ISim(no check), Verilator(no check)

45

Open SoC Debug Documentation Library, Release 0.1

8. Use always_comb rather than always_comb @(*). Even wild-cased sensitive list is an error in VCS.

Existing issues in: VCS

4.1.2 Documentation Style Guide

The Open SoC Debug documentation is written in reStructuredText (rST). It is then processed by Sphinx10 to
generate various output formats, including HTML (for online documentation) and PDF (for offline reading and
printing).

A good syntax overview is included in the Sphinx documentation reStructuredText Primer11.

For the OSD docs, we have a couple of additional conventions.

Headlines and Sections

rST does not have strict rules regarding the formatting of section headers. To keep things consistent, we follow
the rules recommended by the Python Style Guide12. That is:

• # with overline, for parts

• * with overline, for chapters

• =, for sections

• -, for subsections

• ^, for subsubsections

• ", for paragraphs

Tables

Tables are a tricky business, especially if both the PDF and the HTML output should look reasonable and editing
should be easy. We included the Sphinx extension “flat-table” extension, which is also used by the Linux Kernel
documentation, as an easier way of writing tables as nested list. This makes tables a bit harder to read in source
code, but easier to edit and clearer in diffs. In addition, we use the tabularcolumns13 directive to explicitly specify
the width of the table columns in LaTeX/PDF output.

The following code snippet shows how to use flat-table together with a LaTeX column width specification required
for good-looking PDF output:

.. tabularcolumns:: |p{\dimexpr 0.20\linewidth-2\tabcolsep}|p{\dimexpr 0.
→˓20\linewidth-2\tabcolsep}|p{\dimexpr 0.60\linewidth-2\tabcolsep}|
.. flat-table:: Example Table Title
:widths: 2 2 6
:header-rows: 1

* - address
- name
- description

* - 0x0000
- ``MOD_ID``
- module type identifier

Notes:

• Specify the width as fractions of 1 (equal to 100 %) in the tabularcolumn directive.
10 http://www.sphinx-doc.org
11 http://www.sphinx-doc.org/en/stable/rest.html
12 https://docs.python.org/devguide/documenting.html#sections
13 http://www.sphinx-doc.org/en/stable/markup/misc.html#directive-tabularcolumns

46 Chapter 4. Implementer Documentation

http://www.sphinx-doc.org
http://www.sphinx-doc.org/en/stable/rest.html
https://docs.python.org/devguide/documenting.html#sections
http://www.sphinx-doc.org/en/stable/markup/misc.html#directive-tabularcolumns

Open SoC Debug Documentation Library, Release 0.1

• Specify the width of columns as fraction of 10 in the ::widths: parameter.

• Do not change anything in the tabularcolumns directive except for the width unless you have double-
checked that both HTML and PDF output look fine.

• Give tables a caption.

Figures

Pixel Graphics

You can use PNG and JPEG images as usual. Make sure to provide them in sufficiently large resolution (> 150
dpi) to be suitable for printing.

Vector Graphics

For vector graphics, use SVG.

If you include the figure in your document, use .* instead of .svg as file extension. This instructs Sphinx to
use the most appropriate extension for the output format. For HTML, SVG images are included directly. For
PDF/LaTeX, the images are first converted to PDF using Inkscape.

Example:

.. figure:: img/overview.*
:alt: Open SoC Debug architecture overview
:name: fig:spec:architecture:overview

High-level overview of the Open SoC Debug architecture.

:numref:`Figure %s <fig:spec:architecture:overview>` shows the different
→˓components in a typical Open SoC Debug-based debug system.

Notes:

• Make sure not to use any non-standard font inside the graphic, as the SVG will be displayed as-is to users
who might not have the font installed (SVG does not embed fonts; the only thing you can do is create a path
out of the text, removing the ability to edit the text.)

• SVG images do not show up in PDFs generated by ReadTheDocs at the moment.

4.1. Style Guides 47

Open SoC Debug Documentation Library, Release 0.1

48 Chapter 4. Implementer Documentation

CHAPTER 5

Vendor Identifier Registry

Vendor Identifiers are numbers assigned to an entity building Open SoC Debug components or products/devices
and serve as an identifier namespace for that entity. In combination with another identifier (such as a device
identifier or a module identifier) unique identifiers can be created. Vendor IDs are used in different places in OSD,
most notably:

• to describe the type of a debug module (MOD_VENDOR and MOD_ID) and

• to identify the full OSD-enabled device type (SYSTEM_VENDOR_ID and SYSTEM_DEVICE_ID)

The vendor identifier is issued by the Open SoC Debug Project and listed on this page. Other identifiers are usually
assigned independently by the vendor.

To register a new vendor ID please open an issue (or pull request) on GitHub for this document. No fees or
documents are needed.

Table 5.1: OSD Vendor IDs
vendor ID name
0x0001 The Open SoC Debug Project
0x0002 The OpTiMSoC Project
0x0003 LowRISC

49

Open SoC Debug Documentation Library, Release 0.1

50 Chapter 5. Vendor Identifier Registry

CHAPTER 6

Licensing

Open SoC Debug is licensed in a way which allows you to use, modify, and distribute OSD itself and products
based on it without paying any royalties. At the same time, The OSD Contributors do not give any warranty that
it works as expected (or at all). The legal details are layed out in the licenses that govern the individual parts of
OSD. Due to the different nature of code and documentation, we use different licenses.

Note: Only the licenses and other legal documents itself are binding, this page only gives a human-readable and
not legally binding overview. We cannot provide any legal advise if OSD is usable for your use case. Please speak
to a lawyer in such cases.

6.1 Documentation License

This documentation, including the OSD specification itself, is licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

6.2 Reference Implementation License

We try to keep the reference implementation free for use even in commercial closed-source settings. Towards this
goal, the software is generally licensed under the MIT license14, while the hardware reference implementation
carries the Solderpad License15, a variant of the Apache 2.0 software license adjusted for hardware implementa-
tions.

Please see the individual source code repositories and files for more detailled information and possible exceptions.

14 https://opensource.org/licenses/MIT
15 http://solderpad.org/licenses/

51

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://opensource.org/licenses/MIT
http://solderpad.org/licenses/

Open SoC Debug Documentation Library, Release 0.1

52 Chapter 6. Licensing

Index

R
RFC

RFC 2119, 9

53

	Overview Documentation
	The Open SoC Debug Specification
	User Guides
	Implementer Documentation
	Vendor Identifier Registry
	Licensing
	Index

